Как рассчитать количество батарей отопления на комнату. Расчёт количества секций радиаторов отопления. Современные модели имеют свойства предыдущих версий

Как выполнить расчет радиаторов отопления в квартире? Какое количество секций будет минимально необходимым при известной площади помещения?

О простых и относительно сложных способах расчета — эта статья.

Отложим в сторону газовый ключ и болгарку. Сегодня наш инструмент — калькулятор.

Дисклеймер

Эта статья ориентирована не на инженеров-теплотехников, а на владельцев квартиры или частного дома, которые собираются своими руками смонтировать систему отопления. Раз так — инструкция по расчету должна быть простой и понятной.

Мы не станем использовать сложные формулы и такие понятия, как «тепловой поток» и «термическое сопротивление стен», постаравшись предельно упростить подсчеты.

Общие положения

Любой простой способ расчета имеет довольно большую погрешность. Однако с практической стороны для нас важно обеспечить гарантированно достаточную тепловую мощность. Если она окажется больше необходимой даже в пик зимней стужи — что с того?

В квартире, где отопление оплачивается по площади, жар костей не ломит; да и регулировочные дроссели и термостатические регуляторы температуры не являются чем-то очень редким и недоступным.

В случае частного дома и собственного котла цена киловатта тепла нам хорошо известна, и, казалось бы, избыточное отопление ударит по карману. Однако на практике это не так. Все современные газовые и снабжаются термостатами, которые регулируют теплоотдачу в зависимости от температуры в помещении.

Даже если наш расчет мощности радиаторов отопления даст значительную ошибку в большую сторону — мы рискуем лишь стоимостью нескольких дополнительных секций.

Между прочим: помимо среднестатистических зимних температур, раз в несколько лет случаются экстремальные заморозки.
Есть подозрение, что в связи с глобальными климатическими изменениями они будут случаться все чаще, так что, выполняя расчет отопительных радиаторов, не бойтесь ошибиться в большую сторону.

Как рассчитать тепловую мощность отопительного прибора

  • Для всех без исключения электрических отопительных приборов эффективная тепловая мощность в точности равна их паспортной электрической мощности .
    Вспомните школьный курс физики: если не совершается полезная работа (то есть перемещение какого-либо объекта с ненулевой массой против вектора гравитации), вся потраченная энергия идет на нагрев окружающей среды.

  • У большинства отопительных приборов от приличных производителей их тепловая мощность указывается в сопроводительной документации или на сайте изготовителя .
    Часто там можно обнаружить даже калькулятор расчета радиаторов отопления для определенного объема помещения и параметров отопительной системы.

Здесь есть одна тонкость: почти всегда производителем выполняется расчет теплоотдачи радиатора — батарей отопления, конвектора или фанкойла — для вполне конкретной разницы температур между теплоносителем и помещением, равной 70С. Для российских реалий такие параметры зачастую являются недостижимым идеалом.

Наконец, возможен простой, хоть и приблизительный, расчет мощности радиатора отопления по количеству секций.

Биметаллические радиаторы

Расчет биметаллических радиаторов отопления отталкивается от габаритных размеров секции.

Возьмем данные с сайта завода Большевик:

  • Для секции с межосевым расстоянием подводок 500 миллиметров теплоотдача равна 165 ватт.
  • Для 400-миллиметровой секции — 143 ватта.
  • 300 мм — 120 ватт.
  • 250 мм — 102 ватта.

Алюминиевые радиаторы

Расчет алюминиевых радиаторов отопления выполняется исходя из следующих значений (данные для итальянских радиаторов Calidor и Solar):

  • Секция с межосевым расстоянием 500 миллиметров отдает 178-182 ватта тепла.
  • При межосевом расстоянии 350 миллиметров теплоотдача секции уменьшается до 145-150 ватт.

Стальные пластинчатые радиаторы

А как выполнить расчет стальных радиаторов отопления пластинчатого типа? У них ведь нет секций, от количества которых может отталкиваться формула расчета.

Здесь ключевые параметры — опять-таки межосевое расстояние и длина радиатора. Кроме того, производители рекомендуют учитывать способ подключения радиатора: при разных способах врезки в отопительную систему нагрев и, следовательно, тепловая мощность тоже может различаться.

Чтобы не утомлять читателя обилием формул в тексте — просто отошлем его к таблице мощности модельного ряда радиаторов Korad.

Чугунные радиаторы

И только здесь все предельно просто: все производящиеся в России чугунные радиаторы имеют одинаковое межосевое расстояние подводок, равное 500 миллиметрам, и теплоотдачу при стандартной дельте температур в 70С, равную 180 ваттам на секцию.

Полдела сделано. Теперь мы знаем, как рассчитать количество секций или отопительных приборов при известной необходимой тепловой мощности. Но откуда взять саму тепловую мощность, которая нам нужна?

Расчет тепловой мощности

Мы рассмотрим несколько способов расчета, учитывающих разное количество переменных.

По площади

Расчет по площади основан на санитарных нормах и правилах, в которых русским по белому сказано: один киловатт тепловой мощности должен приходиться на 10 м2 площади помещения (100 ватт на м2).

Уточнение: при расчете применяется коэффициент, зависящий от региона страны. Для южных районов он равен 0,7 — 0,9, для Дальнего Востока — 1,6, для Якутии и Чукотки — 2,0.

Понятно, что метод дает весьма значительную погрешность:

  • Панорамное остекление в одну нитку явно даст большие теплопотери по сравнению со сплошной стеной.
  • Расположение квартиры внутри дома не учитывается, хотя понятно, что если рядом теплые стены соседних квартир — при одинаковом количестве радиаторов будет куда теплее, чем в угловой комнате, имеющей общую стену с улицей.
  • Наконец, главное: расчет верен для стандартной высоты потолков в доме советской постройки, равной 2,5 — 2,7 метра. Однако еще в начале 20-го века строились дома с высотой потолков в 4 — 4,5 метра, да и сталинки с трехметровыми потолками тоже потребуют уточненного расчета.

Давайте все-таки применим метод для в комнате размером 3х4 метра, находящейся в Краснодарском крае.

Площадь равна 3х4=12 м2.

Необходимая тепловая мощность отопления — 12м2 х100Вт х0,7 районного коэффициента = 840 ватт.

При мощности одной секции в 180 ватт нам потребуется 840/180=4,66 секции. Число мы, понятно, округлим в большую сторону — до пяти.

Совет: в условиях Краснодарского края дельта температур между комнатой и батареей в 70С нереальна. Лучше устанавливать радиаторы как минимум с 30-процентным запасом.

Простой расчет по объему

Расчет по общему объему воздуха в помещении явно будет более точным уже потому, что учитывает разброс высоты потолков. Он тоже весьма прост: на 1 м3 объема необходимо 40 ватт мощности отопительной системы.

Давайте посчитаем необходимую мощность для нашей комнатки под Краснодаром с небольшим уточнением: она находится в сталинке 1960 года постройки с высотой потолка 3,1 метра.

Объем помещения равен 3х4х3,1=37,2 кубометра.

Соответственно радиаторы должны иметь мощность 37,2х40=1488 ватта. Учтем районный коэффициент 0,7: 1488х0,7=1041 ватт, или шесть секций чугунного лютого ужаса под окном. Почему ужаса? Внешний вид и постоянные течи между секциями через несколько лет эксплуатации восторга не вызывают.

Если же вспомнить, что цена чугунной секции выше, чем у алюминиевого или — идея покупки такого отопительного прибора и впрямь начинает вызывать легкую панику.

Уточненный расчет по объему

Более точный расчет систем отопления выполняется с учетом большего числа переменных:

  • Количества дверей и окон. Усредненные потери тепла через окно стандартного размера — 100 ватт, через дверь — 200.
  • Расположение комнаты в торце или углу дома заставит нас использовать коэффициент 1,1 — 1,3 в зависимости от материала и толщины стен здания.
  • У частных домов используется коэффициент 1,5, поскольку куда выше потери тепла через пол и крышу. Сверху и снизу ведь не теплые квартиры, а улица…

Базовое значение — те же 40 ватт на кубометр и те же региональные коэффициенты, что и при расчете по площади комнаты.

Давайте выполним расчет тепловой мощности радиаторов отопления для комнаты с теми же габаритами, что и в предыдущем примере, но мысленно перенесем ее в угол частного дома в Оймяконе (средняя температура января -54С, минимум за время наблюдений — 82). Ситуация усугубляется дверью на улицу и окошком, из которого видны жизнерадостные оленеводы.

Базовую мощность с учетом только объема помещения мы уже выполнили: 1488 ватт.

Окно и дверь прибавят 300 ватт. 1488+300=1788.

Частный дом. Холодный пол и утечка тепла через крышу. 1788х1,5=2682.

Угол дома заставит нас применить коэффициент 1,3. 2682х1,3=3486,6 ватта.

Наконец, теплый и ласковый климат Оймяконского улуса Якутии приводит нас к мысли о том, что полученный результат можно умножить на региональный коэффициент 2,0. 6973,2 ватта требуется для обогрева маленькой комнатушки!

Расчет количества радиаторов отопления нам уже знаком. Общее количество чугунных или алюминиевых секций составит 6973,2/180=39 секций с округлением. При длине секции 93 миллиметра баян под окном будет иметь длину 3,6 метра, то есть едва поместится вдоль более длинной из стенок…

«- Десять секций? Хорошее начало!» — такой фразой житель Якутии прокомментирует это фото.

Заключение

Дополнительную информацию о расчете отопительных систем вы найдете в видео в конце статьи. Автор же напоследок хочет сделать официальное заявление: в Оймякон по своей воле — ни ногой. Теплых зим!

Ватты и секции

Чтобы вычислить количество секций радиаторов отопления, нужно знать два значения:

  • Количество тепла, которое теряется через ограждающие конструкции и которое нам нужно компенсировать;
  • Тепловой поток от одной секции.

Разделив первое значение на втрое, мы получим искомое — количество секций.

О мощности

В расчетах для батарей разных типов принято оперировать такими значениями тепловой мощности на секцию:

  • Чугунный радиатор — 160 ватт;

  • Биметаллический — 180 ватт;

  • Алюминиевый — 200 ватт.

Как всегда, дьявол кроется в деталях.

Кроме стандартного размера радиаторов (500 мм по осям коллекторов), существуют еще низкие батареи, предназначенные для установки под подоконники нестандартной высоты и создания тепловой завесы перед панорамными окнами. При межосевом расстоянии по коллекторам в 350 мм тепловой поток на секцию уменьшается в 1,5 раза (скажем, для алюминиевого радиатора — 130 ватт), при 200 мм — в 2 раза (для алюминия — 90-100 ватт).

Кроме того, на фактическую теплоотдачу очень сильно влияют:

  1. Температура теплоносителя (читай — температура поверхности отопительного прибора);
  2. Температура в помещении.

Обычно производители указывают тепловой поток для разницы между этими температурами в 70 градусов (скажем, 90/20С). Однако реальные параметры системы отопления часто далеки от максимально допустимых в ней 90-95С: в системе ЦО температура подачи достигает 90С лишь в пик морозов, а в автономном контуре типичная температура теплоносителя и вовсе равна 70С на подаче и 50С на обратном трубопроводе.

Уменьшение дельты температур в два раза (например, с 90/20 до 60/25 градусов) уменьшит мощность секции ровно вдвое. Алюминиевый радиатор будет отдавать не более 100 ватт тепла на секцию, чугунный — не более 80 ватт.

Схемы расчета

Способ 1: по площади

Простейшая схема расчета учитывает только площадь комнаты. Согласно нормам полувековой давности, на один квадратный метр помещения должно приходиться 100 ватт тепла.

Зная тепловую мощность секции, несложно выяснить, сколько радиаторов нужно на 1м2. При мощности 200 ватт на секцию она способна отапливать 2 м2 площади; 1 квадрат помещения соответствует половине секции.

Давайте в качестве примера рассчитаем отопление комнаты размером 4х5 метров для чугунных радиаторов МС-140 (номинальная мощность 140 ватт на секцию) при температуре теплоносителя 70С и температуре в комнате 22С.

  1. Дельта температур между средами равна 70-22=48С;
  2. Отношение этой дельты к стандартной, для которой заявлена мощность в 140 ватт — 48/70=0,686. Значит, реальная мощность в приведенных условиях будет равна 140х0,686=96 ватт на секцию;
  3. Площадь помещения составляет 4х5=20 м2. Расчетная потребность в тепле — 20х100=2000 Вт;
  4. Итоговое количество секций — 2000/96=21 (с округлением до целого значения).

Такая схема предельно проста (особенно если использовать номинальное значение теплового потока), но она не учитывает ряд дополнительных факторов, влияющих на потребность помещения в тепле.

Вот их неполный список:

  • Комнаты могут различаться высотой потолков. Чем выше перекрытие, тем больший объем предстоит отапливать;

Увеличение высоты потолка увеличивает разброс температур на уровне и под потолком. Для того, чтобы получить заветные +20 на полу, воздух под перекрытием 2,5-метровой высоты достаточно прогреть до +25С, а в комнате высотой 4 метра под потолком будут все +30. Рост температуры увеличивает потери тепловой энергии через перекрытие.

  • Через окна и двери в общем случае теряется больше тепла, чем через капитальные стены;

Правило не универсально. Например, тройной стеклопакет с двумя энергосберегающими стеклами по теплопроводности соответствует 70-сантиметровой кирпичной стене. Двойной стеклопакет с одним i-стеклом пропускает на 20% тепла больше, при этом его цена ниже на 70%.

  • Расположение квартиры в многоквартирном доме тоже влияет на потери тепла. Угловые и торцевые комнаты с общими с улицей стенами будут явно холоднее расположенных в центре здания;

  • Наконец, на теплопотерях очень сильно сказывается климатическая зона. В Ялте и Якутске (средняя температура января +4 и -39 соответственно) количество секций радиатора на 1 м2 будет предсказуемо отличаться.

Способ 2: по объему для стандартного утепления

Вот инструкция для зданий, соответствующих требованиям СНиП 23-02-2003, который нормирует тепловую защиту строений:

  • Вычисляем объем помещения;
  • На кубометр берем 40 ватт тепла;
  • Для угловых и торцевых комнат умножаем результат на коэффициент 1,2;
  • На каждое окно добавляем к результату 100 Вт, на каждую ведущую на улицу дверь — 200;

  • Полученное значение умножаем на региональный коэффициент. Его можно взять из приведенной ниже таблицы.
Средняя температура января Коэффициент
0 0,7
-10 1
-20 1,3
-30 1,6
-40 2

Давайте выясним, сколько нужно тепла для нашей комнаты размером 4х5 метров, уточнив ряд условий:

  • Высота потолка в ней равна 3 метрам;
  • Комната — угловая, с двумя окнами;
  • Она расположена в городе Комсомольске-на-Амуре (средняя температура января -25С).

Приступим.

  1. Объем комнаты — 4х5х3=60 м3;
  2. Базовое значение потребности в тепле — 60х40=2400 Вт;
  3. Поскольку комната угловая, умножаем результат на 1,2. 2400х1,2=2880;
  4. Два окна добавляют еще 200 Вт. 2880+200=3080;
  5. С учетом климатической зоны мы используем региональный коэффициент 1,5. 3080х1,5=4620 ватт, что соответствует 23 секциям работающих на номинальной мощности алюминиевых радиаторов.

Теперь мы проявим любопытство и подсчитаем, сколько нужно секций радиатора на 1 м2. 23/20=1,15. Очевидно, расчет тепловой нагрузки по старым СНиП (100 ватт на квадрат, или секция на 2 м2) будет для наших условий чересчур оптимистичным.

Способ 3: по объему для нестандартного утепления

Как рассчитать количество батарей на комнату в здании, не соответствующем требованиям СНиП 23-02-2003 (например, в панельном доме советской постройки или в современном «пассивном» доме с экстремально эффективным утеплением)?

Потребность в тепле оценивается по формуле Q=V*Dt*k/860, где:

  • Q — искомое значение в киловаттах;
  • V — отапливаемый объем;
  • Dt — перепад температур между помещением и улицей;
  • k — коэффициент, определяющийся качеством утепления.

Разность температур рассчитывается между санитарной нормой для жилого помещения (18-22С в зависимости от климатической зоны и расположения комнаты внутри здания) и температурой самой холодной пятидневки года.

Коэффициент утепления можно взять из еще одной таблицы:

В качестве примера мы снова разберем нашу комнату в Комсомольске-на-Амуре, очередной раз уточнив вводные данные:

  • Температура самой холодной пятидневки для этой климатической зоны равна -31С;

Абсолютный минимум ниже и составляет -44С. Однако экстремальные холода длятся недолго и не учитываются в расчетах.

  • Стены дома — кирпичные, толщиной в полметра (два кирпича). Остекление окон — тройное.

Итак:

  1. Объем комнаты нами уже рассчитан ранее. Он равен 60 м3;
  2. Санитарная норма для угловой комнаты и региона с минимумом зимних температур ниже -31С — +22, что в сочетании с температурой самой холодной пятидневки дает нам Dt=(22 — -31)=53;
  3. Коэффициент утепления возьмем равным 1,2;

  1. Потребность в тепле составит 60х53х1,2/860=4,43 КВт, или 22 секции по 200 ватт. Результат примерно равен полученному в предыдущем расчете благодаря тому, что утепление дома и окон соответствует требованиям регламентирующего тепловую защиту зданий СНиП.

Полезные мелочи

На реальную теплоотдачу радиаторов отопления оказывает влияние ряд дополнительных факторов, которые тоже стоит учесть в расчетах:

  • При одностороннем боковом подключении мощность всех секций соответствует номинальной только при их количестве не более 7-10. Дальний край более длинной батареи будет куда холоднее подводок;

Проблема решается диагональным подключением. В этом случае будут равномерно прогреты все секции, независимо от их количества.

  • В большинстве домов новой постройки розливы подачи и обратки отопления расположены в подвале, что подразумевает попарное соединение стояков перемычками на верхнем этаже. Радиатор на обратном стояке всегда будет холоднее радиатора на подаче;
  • Разнообразные экраны и ниши опять-таки уменьшают теплоотдачу отопительного , причем разница с номинальной тепловой мощностью может достигать 50%;

  • Дросселирующая арматура на подводке ограничивает расход воды через радиатор даже в полностью открытом состоянии. Падение тепловой мощности определяется конфигурацией дросселя и обычно составляет 10-15%. Исключение — полнопроходные шаровые и пробковые краны;

  • Радиаторы с боковым односторонним подключением в системе ЦО постепенно заиливаются. По мере заиливания будет падать температура крайних секций.

Для борьбы с грязью батарея периодически промывается через установленный в нижний коллектор крайней секции промывочный кран. Подключенный к нему шланг направляется в канализацию, после чего через него сбрасывается некоторое количество теплоносителя.

Заключение

Как видите, простые схемы расчета отопления не всегда дают точный результат. Узнать больше о методах расчетов вам поможет видео в этой статье. Не стесняйтесь делиться в комментариях собственным опытом. Успехов, камрады!

Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

Есть еще один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.

Расчет радиаторов отопления по площади

Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

  • для средней климатической полосы на отопление 1м 2 жилого помещения требуется 60-100Вт;
  • для областей выше 60 о требуется 150-200Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м 2 , потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»

Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

Как посчитать секции радиатора по объему помещения

При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:

Рассчитаем все для того же помещения площадью 16м 2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м 3 .

  • В панельном доме. Требуемое на отопление тепло 43,2м 3 *41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
  • В кирпичном доме. Тепла нужно 43,2м 3 *34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).

Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.

Корректировка результатов

Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Окна

На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

  • соотношение площади окна к площади пола:
    • 10% — 0,8
    • 20% — 0,9
    • 30% — 1,0
    • 40% — 1,1
    • 50% — 1,2
  • остекление:
    • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
    • обычный двухкамерный стеклопакет — 1,0
    • обычные двойные рамы — 1,27.

Стены и кровля

Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
  • недостаточная (отсутствует) — 1,27
  • хорошая — 0,8

Наличие наружных стен:

  • внутреннее помещение — без потерь, коэффициент 1,0
  • одна — 1,1
  • две — 1,2
  • три — 1,3

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

  • -10 о С и выше — 0,7
  • -15 о С — 0,9
  • -20 о С — 1,1
  • -25 о С — 1,3
  • -30 о С — 1,5

Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.

Расчет разных типов радиаторов

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/мин примерно равен мощности в 1 кВт (1000 Вт).

Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя.

Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

  • алюминиевые — 190Вт
  • биметаллические — 185Вт
  • чугунные — 145Вт.

Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м 2 площади. Тогда на помещение 16м 2 нужно: 16м 2 /1,8м 2 =8,88шт. Округляем — нужны 9 секций.

Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:

  • биметаллический радиатор — 1,8м 2
  • алюминиевый — 1,9-2,0м 2
  • чугунный — 1,4-1,5м 2 .

Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м 2 . Считаем количество секций стандартного размера: 16м 2 /2м 2 =8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.

Корректировка в зависимости от режима отопительной системы

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90 о С, в обратке — 70 о С (обозначается 90/70) в помещении при этом должно быть 20 о С. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.

Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м 2 . Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м 2 . Потому нам потребуется 16м 2 /1,5м 2 =10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:

  • высокотемпературная 90/70/20- (90+70)/2-20=60 о С;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30 о С.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м 2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20 о С а, например, 25 о С просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55 о С. Теперь находим соотношение 60 о С/55 о С=1,1. Чтобы обеспечить температуру в 25 о С нужно 11шт*1,1=12,1шт.

Зависимость мощности радиаторов от подключения и места расположения

Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Определение количества радиаторов для однотрубных систем

Есть еще один очень важный момент: все вышеизложенное справедливо для , когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Итоги

Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Правильно рассчитать необходимое количество секций – с одной стороны не сложная, но тем не менее очень важная задача для любого домовладельца. Именно от правильности подсчёта будет зависеть комфорт пребывания в жилище даже в самые сильные морозы. В то же время, излишнее количество монтируемых секций приведёт к необходимости в течение всего зимнего периода искусственно ограничивать подачу теплоносителя в отопительный прибор или, что гораздо хуже, открывать окна и отапливать улицу, что чревато дополнительными расходами.

Стандартный метод расчёта радиатора отопления

Самый простой расчёт, рекомендуемый зачастую продавцами данного оборудования, основывается на общепринятых нормах, по которым на обогрев одного квадратного метра площади помещения должно приходится около 100 Вт мощности нагревательного прибора. Это примерно соответствует, по их же оценкам, одной секции батареи на два квадратных метра помещения.

Данный подход является чрезмерно упрощённым. На выбор количества секций радиатора или его площади влияет целый ряд различных факторов. В первую очередь следует понять, что батареи отопления подбираются не в зависимости от площади в помещения, а в зависимости от его теплопотерь, которые определяются наличием одного или нескольких окон, дверей, расположением помещения, в т.ч. углового, а также ряда других факторов.

Тепловая мощность секции - важнейший параметр

Кроме того, различные типы отопительных приборов имеют разную тепловую мощность. У алюминиевых радиаторов она может достигать 185-200 Вт на секцию, а у чугунных она редко превышает 130 Вт. Но кроме материала секций на тепловую мощность сильно влияет и параметр (DT), учитывающий температуру входящего и выходящего из батареи теплоносителя. Так, высокая тепловая мощность алюминиевой батареи, соответствующая по паспорту 180 Вт, достигается при DT = 90/70, то есть температура входящей воды должна быть 90 градусов, выходящей – 70 градусов.

Однако нужно понимать, что эксплуатация практически любого котла при таких условиях – большая редкость. У настенных котлов максимальная температура – 85 градусов, а пока теплоноситель дойдёт до батареи, значение температуры ещё более снизится. Поэтому даже при покупке алюминиевых батарей нужно исходить из того, что тепловая мощность секции не будет превышать значения, соответствующего DT=70/55, т.е. примерно 120 Вт.

От чего зависят тепловые потери помещения

Итак, подбор тепловой мощности отопительных приборов производится исходя из величины тепловых потерь для того, чтобы имелась возможность их полностью компенсировать.

Факторы, влияющие на тепловые потери:

  1. Место, в котором находится помещение. Это либо юг, либо север, либо центральная часть страны, для которых значения минимальной годовой температуры довольно сильно различаются.
  2. Как помещение располагается относительно сторон света. Наличие и окон, расположенных как на северной, так и на южной стороне, сильно влияет на теплопотери помещения.
  3. Высота потолков. В случае, когда высота в здании отличается от стандартных 2,5 метров, необходимо также вносить в расчёт определённые поправки.
  4. Необходимая температура. Не для всех помещений необходима одинаковая температура. В зале, например, значения температур могут быть несколько ниже, чем в спальне, что отражается и на подсчёте необходимой мощности нагревательных приборов.
  5. Толщина стен, потолков, а также их состав, наличие теплоизоляции, так как коэффициент теплопроводности у разных материалов может сильно различаться. У бетона, например, коэффициент максимальный, а у теплоизоляционного пенопласта – минимальный.
  6. Наличие оконных проёмов, дверей и их количество. Понятно, что чем больше площадь в помещении, тем сильнее в нём будут теплопотери, так как именно через эти проёмы происходят основные потери тепла.
  7. Наличие вентиляции. Этот параметр нельзя не учитывать, даже если в помещении отсутствует . Так называемая инфильтрация присутствует всегда – время от времени открываются окна, через двери в помещение заходят посетители и т.д.

Определяем необходимую тепловую мощность

Однако полностью учесть все возможные факторы, увеличивающие или уменьшающие тепловые потери можно с использованием только довольно сложных методик подсчёта и профессионального программного обеспечения. В целом такие расчёты подтверждают, что для помещения, в котором не проводилось специальных работ, направленных на повышение энергоэффективности, показатель в 100 Вт мощности батарей отопления на квадратный метр является верным. Это справедливо для средней полосы. Для северных регионов параметр следует увеличить до 150 или даже 200 Вт.

Однако если при строительстве или ремонте были проведены и полов, в оконных проёмах стоят энергосберегающие стеклопакеты, то даже в суровую зиму мощности отопительных приборов даже в 70 Вт будет вполне достаточно. Этот вопрос, конечно, не так существенен для владельцев квартир с центральным отоплением, но хозяевам частных домов снижение необходимой тепловой мощности поможет сэкономить средства в течение года.

Рассчитываем количество секций батареи

Итак, проведём простой расчёт количества секций алюминиевой батареи, необходимой для отопления небольшой комнаты площадью 15 квадратных метров и нормальной высотой потолков. Примем значение в 100 Вт на 1 кв. м в качестве необходимой мощности обогревательных приборов, а номинальную мощность одной секции батареи – 120 Вт. Тогда необходимое количество секций можно будет определить по формуле:

N = S*Qп/Qн, где

  • N –количество секций,
  • S – площадь помещения,
  • Qп – необходимая тепловая мощность в зависимости от типа помещения,
  • Qн – номинальная тепловая мощность одной секции батареи.

В нашем случае N = 15*100/120 = 12,5

Таблица: пример количества секций радиатора в зависимости от площади комнаты

Однако нужно учитывать, что тепловая мощность современных батарей, будь то не только алюминиевых, но и биметаллических, в зависимости от конструкции и производителя может сильно различаться, находясь в пределах от 120 до 200 Вт. Соответственно, и количество секций будет также довольно сильно различаться.

Чаще всего биметаллические радиаторы владельцы приобретают для замены чугунных батарей, которые по той или иной причине вышли из строя или стали плохо обогревать помещение. Чтобы эта модель радиаторов хорошо справлялась со своей задачей, необходимо ознакомиться с правилами расчета количества секций на все помещение.

Необходимые данные для подсчета

Самим правильным решением станет обращение к опытным специалистам. Профессионалы могут рассчитать количество биметаллических радиаторов отопления довольно точно и эффективно. Такой расчет поможет определить, сколько секций понадобится не только для одной комнаты, но и для всего помещения, а также для любого типа объекта.

Все профессионалы учитывают следующие данные для подсчета количества батарей:

  • из какого материала было построено здание;
  • какая толщина стен в комнатах;
  • тип окон, монтаж которых был произведен в данном помещении;
  • в каких климатических условиях находится здание;

  • есть ли в комнате, находящейся над помещением, где ставятся радиаторы, какое-нибудь отопление;
  • сколько в комнате «холодных» стен;
  • какая площадь рассчитываемой комнаты;
  • какая высота стен.

Все эти данные позволяют сделать расчет наиболее точным для установки биметаллических батарей.

Коэффициент теплопотерь

Чтобы сделать расчет правильно, необходимо для начала посчитать, какие будут тепловые потери, а затем высчитать их коэффициент. Для точных данных нужно учитывать одно неизвестное, то есть стены. Это касается, прежде всего, угловых комнат. Например, в помещении представлены следующие параметры: высота – два с половиной метра, ширина – три метра, длина – шесть метров.

  • Ф является площадью стены;
  • а – ее длиной;
  • х – ее высотой.

Расчет ведется в метрах. По этим подсчетам площадь стены будет равна семи с половиной квадратным метрам. После этого необходимо рассчитать теплопотери по формуле Р = F*K.

Также умножить на разницу температур в помещении и на улице, где:

  • Р – это площадь теплопотерь;
  • F является площадью стены в метрах квадратных;
  • К – это коэффициент теплопроводности.

Для правильного расчета нужно учитывать температуру. Если на улице температура составляет примерно двадцать один градус, а в комнате восемнадцать градусов, то для расчета данного помещения нужно добавить еще два градуса. К полученной цифре нужно добавить Р окон и Р двери. Полученный результат нужно поделить на число, обозначающее тепловую мощность одной секции. В результате простых вычислений и получится узнать, сколько же батарей необходимо для обогрева одной комнаты.

Однако все эти расчеты правильны исключительно для комнат, которые имеют средние показатели утепления. Как известно, одинаковых помещений не бывает, поэтому для точного расчета необходимо обязательно учесть коэффициенты поправки. Их нужно умножить на результат, полученный при помощи вычисления по формуле. Поправки коэффициента для угловых комнат составляют 1,3, а для помещений, находящихся в очень холодных местах – 1,6, для чердаков – 1,5.

Мощность батареи

Чтобы определить мощность одного радиатора, необходимо рассчитать какое количество киловатт тепла понадобится от установленной системы отопления. Мощность, которая нужна для обогревания каждого квадратного метра, составляет 100 ватт. Полученное число умножается на количество квадратных метров комнаты. Затем цифра делится на мощность каждой отдельно взятой секции современного радиатора. Некоторые модели батарей состоят из двух секций и больше. Делая расчет, нужно выбирать радиатор, который имеет приближенное к идеалу число секций. Но все же, оно должно быть немного больше расчетного.

Это делается для того, чтобы сделать помещение теплее и не мерзнуть в холодные дни.

Производители биметаллических радиаторов указывают их мощность для некоторых данных системы отопления. Поэтому покупая любую модель, необходимо учесть тепловой напор, который характеризует, как нагревается теплоноситель, а также как он обогревает систему отопления. В технической документации часто указывают мощность одной секции для напора тепла в шестьдесят градусов. Это соответствует температуре воды в радиаторе в девяносто градусов. В тех домах, где помещения отапливают чугунными батареями, это оправданно, но для новостроек, где сделано все более современно, температура воды в радиаторе вполне может быть ниже. Напор тепла в таких системах отопления может составлять до пятидесяти градусов.

Расчет тут произвести тоже нетрудно. Нужно мощность радиатора поделить на цифру, обозначающую тепловой напор. Число делится на цифру, указанную в документах. При этом эффективная мощность батарей станет немного меньше.

Именно ее необходимо ставить во все формулы.

Популярные методы

Для вычета нужного количества секций в устанавливаемом радиаторе может быть использована не одна формула, а несколько. Поэтому стоит оценить все варианты и выбрать тот, что подойдет для получения более точных данных. Для этого нужно знать, что по нормам СНиП на 1 м², одна биметаллическая секция может обогреть один метр и восемьдесят сантиметров площади. Чтобы посчитать какое количество секций понадобиться на 16 м², нужно разделить эту цифру на 1,8 квадратного метра. В итоге получается девять секций. Однако этот метод довольно примитивный и для более точного определения необходимо учитывать все вышесказанные данные.

Существует еще один простой метод для самостоятельного вычисления. Например, если взять небольшую комнату в 12 м², то очень сильные батареи здесь ни к чему. Можно взять, для примера, теплоотдачу всего одной секции в двести ватт. Тогда по формуле можно легко вычислить их количество, требуемое для выбранной комнаты. Чтобы получить нужную цифру, нужно 12 – это количество квадратов, умножить на 100, мощность на метр квадратный и поделить на 200 ватт. Это, как можно понять, является значением теплоотдачи на одну секцию. В результате вычислений получится число шесть, то есть именно столько секций понадобится для отопления помещения в двенадцать квадратов.

Можно рассмотреть еще один вариант для квартиры с квадратурой в 20 м². Допустим, что мощность секции купленного радиатора – сто восемьдесят ватт. Тогда, подставляя все имеющиеся значения в формулу, получится такой результат: 20 нужно умножить на 100 и разделить на 180 будет равно 11, а значит, такое количество секций понадобится для отопления данного помещения. Однако такие результаты будут действительно соответствовать тем помещениям, где потолки не выше трех метров, а климатические условия не очень жесткие. А также не были учтены и окна, то есть их количество, поэтому к конечному результату необходимо добавить еще несколько секций, их число будет зависеть от количества окон. То есть в комнате можно установить два радиатора, в которых будет по шесть секций. При этом расчете была добавлена еще одна секция с учетом окон и дверей.

По объему

Чтобы сделать вычисление более точными, нужно провести расчет по объему, то есть учесть три измерения в выбранной отапливаемой комнате. Все расчеты делаются практически одинаково, только в основе находятся данные мощности, рассчитанной на один метр кубический, которые равны сорок одному ватту. Можно попробовать рассчитать количество секций биметаллической батареи для помещения с такой площадью, как в варианте, рассмотренном выше, и сопоставить результаты. В этом случае высота потолков будет равна двум метрам семидесяти сантиметрам, а квадратура помещения будет двенадцать квадратных метров. Тогда нужно умножить три на четыре, а потом на два и семь.

Результат будет таким: тридцать два и четыре метра кубических. Его надо умножить на сорок один и получится тысяча триста двадцать восемь и четыре ватта. Такая мощность радиатора будет идеально подходящей для отопления этой комнаты. Затем этот результат нужно разделить на двести, то есть число ватт. Результат будет равен шести целым шестидесяти четырем сотым, а значит, понадобится радиатор на семь секций. Как видно, результат расчета по объему намного точнее. В итоге не нужно будет даже учитывать число окон и дверей.

А также можно сравнить и результаты вычисления в помещении с двадцатью квадратными метрами. Для этого необходимо умножить двадцать на два и семь, получится пятьдесят четыре метра кубических – это объем помещения. Далее, нужно умножить на сорок один и в результате получится две тысячи четыреста четырнадцать ватт. Если батарея будет иметь мощность в двести ватт, то на эту цифру нужно разделить на полученный результат. В итоге выйдет двенадцать и семь, а значит для данной комнаты необходимо такое количество секций, как и в предыдущем расчете, но этот вариант намного точнее.



 
Статьи по теме:
Рыба на решетке - самое вкусное и ароматное блюдо
Особенность приготовления рыбы на мангале состоит в том, что независимо от того, как вы будете жарить рыбу — целиком или кусочками, кожу снимать не следует. Тушку рыбы нужно разделать очень аккуратно — старайтесь разрезать ее таким образом, что голова и х
Ю.Андреев - Живой журнал! Андреев Ю.А. Юрий Андреев: биография
Андреев Ю.А. - об авторе Юрий Андреевич родился в Днепропетровске. В 1938 году семья переехала из Днепропетровска в Смоленск, где встретила войну (отец - кадровый военный). В 1944 семья переехала в Ленинград по месту службы отца. Окончил школу с золотой
Мастер-класс для педагогов на тему «Создание электронных тестов» методическая разработка по технологии на тему
1C:Электронное обучение 1С:Электронное обучение. Экзаменатор Разработка электронных тестов Позволяет разрабатывать собственные электронные тесты и импортировать тесты других разработчиков. Также могут быть импортированы и другие учебные материалы: файлы,
Старец Павел (Груздев) Старец архимандрит павел груздев
Архимандрит Павел (в миру Павел Александрович Груздев) родился 10 января 1910 года в деревне Барок Мологского уезда Ярославской губернии.Когда его отца Александра Александровича Груздева призвали во время войны 1914 года в армию, маленького шестилетнего П