35 деформация при растяжении сжатии закон гука. Продольная и поперечная деформация. Контрольные вопросы и задания

Рассмотрим прямой брус постоянного сечения длиной заделанный одним концом и нагруженный на другом конце растягивающей силой Р (рис. 8.2, а). Под действием силы Р брус удлиняется на некоторую величину которая называется полным, или абсолютным, удлинением (абсолютной продольной деформацией).

В любых точках рассматриваемого бруса имеется одинаковое напряженное состояние и, следовательно, линейные деформации (см. § 5.1) для всех его точек одинаковы. Поэтому значение можно определить как отношение абсолютного удлинения к первоначальной длине бруса I, т. е. . Линейную деформацию при растяжении или сжатии брусьев называют обычно относительным удлинением, или относительной продольной деформацией, и обозначают .

Следовательно,

Относительная продольная деформация измеряется в отвлеченных единицах. Деформацию удлинения условимся считать положительной (рис. 8.2, а), а деформацию сжатия - отрицательной (рис. 8.2, б).

Чем больше величина силы, растягивающей брус, тем больше, при прочих равных условиях, удлинение бруса; чем больше площадь поперечного сечения бруса, тем удлинение бруса меньше. Брусья из различных материалов удлиняются различно. Для случаев, когда напряжения в брусе не превышают предела пропорциональности (см. § 6.1, п. 4), опытом установлена следующая зависимость:

Здесь N - продольная сила в поперечных сечениях бруса; - площадь поперечного сечения бруса; Е - коэффициент, зависящий от физических свойств материала.

Учитывая, что нормальное напряжение в поперечном сечении бруса получаем

Абсолютное удлинение бруса выражается формулой

т. е. абсолютная продольная деформация прямо пропорциональна продольной силе.

Впервые закон о прямой пропорциональности между силами и деформациями сформулировал (в 1660 г.). Формулы (10.2)-(13.2) являются математическими выражениями закона Гука при растяжении и сжатии бруса.

Более общей является следующая формулировка закона Гука [см. формулы (11.2) и (12.2)]: относительная продольная деформация прямо пропорциональна нормальному напряжению. В такой формулировке закон Гука используется не только при изучении растяжения и сжатия брусьев, но и в других разделах курса.

Величина Е, входящая в формулы (10.2)-(13.2), называется модулем упругости первого рода (сокращенно-модулем упругости) Эта величина - физическая постоянная материала, характеризующая его жесткость. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформация.

Произведение назовем жесткостью поперечного сечения бруса при растяжении и сжатии.

В приложении I приведены значения модулей упругости Е для различных материалов.

Формулой (13.2) можно пользоваться для вычисления абсолютной продольной деформации участка бруса длиной лишь при условии, что сечение бруса в пределах этого участка постоянно и продольная сила N во всех поперечных сечениях одинакова.

Кроме продольной деформации, при действии на брус сжимающей или растягивающей силы наблюдается также поперечная деформация. При сжатии бруса поперечные размеры его увеличиваются, а при растяжении - уменьшаются. Если поперечный размер бруса до приложения к нему сжимаюших сил Р обозначить b, а после приложения этих сил (рис. 9.2), то величина будет обозначать абсолютную поперечную деформацию бруса.

Отношение является относительной поперечной деформацией.

Опыт показывает, что при напряжениях, не превышающих предела упругости (см. § 6.1, п. 3), относительная поперечная деформация прямо пропорциональна относительной продольной деформации , но имеет обратный знак:

Коэффициент пропорциональности в формуле (14.2) зависит от материала бруса. Он называется коэффициентом поперечной деформации, или коэффициентом Пуассона, и представляет собой отношение относительной поперечной деформации к продольной, взятое по абсолютной величине, т. е.

Коэффициент Пуассона наряду с модулем упругости Е характеризует упругие свойства материала.

Величина коэффициента Пуассона определяется экспериментально. Для различных материалов она имеет значения от нуля (для пробки) до величины, близкой к 0,50 (для резины и парафина). Для стали коэффициент Пуассона равен 0,25-0,30; для ряда других металлов (чугуна, цинка, бронзы, меди) он имеет значения от 0,23 до 0,36. Ориентировочные значения коэффициента Пуассона для различных материалов приведены в приложении I.


Рассмотрим прямой стержень постоянного поперечного сечения, жестко закрепленный сверху. Пусть стержень имеет длину и нагружен растягивающей силой F . От действия этой силы длина стержня увеличивается на некоторую величину Δ (рис.9.7,а).

При сжатии стержня такой же силой F длина стержня сократится на такую же величину Δ (рис.9.7,б).

Величина Δ , равная разности между длинами стержня после деформации и до деформации, называется абсолютной линейной деформацией (удлинением или укорочением) стержня при его растяжении или сжатии.

Отношение абсолютной линейной деформации Δ к первоначальной длине стержня называется относительной линейной деформацией и обозначается буквой ε илиε x ( где индекс x указывает направление деформации). При растяжении или сжатии стержня величину ε просто называют относительной продольной деформацией стержня. Она определяется по формуле:

Многократные исследования процесса деформирования растянутого или сжатого стержня в упругой стадии, подтвердили существование прямой пропорциональной зависимости между нормальным напряжением и относительной продольной деформацией. Эта зависимость называется законом Гука и имеет вид:

Величина E называется модулем продольной упругости или модулем первого рода. Она является физической постоянной (константой) для каждого вида материала стержня и характеризует его жесткость. Чем больше величина E , тем меньше будет продольная деформация стержня. Величина E измеряется в тех же единицах, что и напряжение, то есть в Па , МПа , и тому подобное. Величины модуля упругости содержатся в таблицах справочной и учебной литературы. Например, величина модуля продольной упругости стали принимается равной E = 2∙10 5 МПа , а древесины

E = 0,8∙10 5 МПа.

При расчете стержней на растяжение или сжатие, часто возникает необходимость определения величины абсолютной продольной деформации , если известна величина продольной силы, площадь поперечного сечения и материал стержня. Из формулы (9.8) найдем: . Заменим в этом выражении ε его значением из формулы (9.9). В результате получим = . Если использовать формулу нормального напряжения , тополучим окончательную формулу для определения абсолютной продольной деформации:

Произведение модуля продольной упругости на площадь поперечного сечения стержня называется его жесткостью при растяжении или сжатии.

Анализируя формулу (9.10) сделаем существенный вывод: абсолютная продольная деформация стержня при растяжении (сжатия) прямо пропорциональная произведению продольной силы на длину стержня и обратно пропорциональная его жесткости .

Заметим, что формула (9.10) может быть использована в том случае, когда поперечное сечение стержня и продольная сила имеют постоянные значения по всей его длине. В общем случае, когда стержень имеет ступенчато переменную жесткость и загружен по длине несколькими силами, нужно разделить его на участки и определить абсолютные деформации каждого из них по формуле (9.10).

Алгебраическая сумма абсолютных деформаций каждого участка будет равняться абсолютной деформации всего стержня, то есть:

Продольные деформации стержня от действия равномерно распределенной нагрузки вдоль его оси (например, от действия собственного веса), определяется следующей формулой, которую приводим без доказательства:

В случае растяжения или сжатия стержня, кроме продольных деформаций возникают также поперечные деформации, как абсолютные, так и относительные. Обозначим через b размер поперечного сечения стержня до деформации. При растяжении стержня силой F этот размер уменьшится на величину Δb , которая является абсолютной поперечной деформацией стержня. Эта величина имеет отрицательный знак.При сжатии, напротив, абсолютная поперечная деформация будет иметь положительный знак (рис. 9.8).

План лекции

1. Деформации, закон Гука при центральном растяжении-сжатии стержней.

2. Механические характеристики материалов при центральном растяжении и сжатии.

Рассмотрим стержневой элемент конструкции в двух состояниях (см. рисунок 25):

Внешняя продольная сила F отсутствует, начальная длина стержня и его поперечный размер равны соответственно l и b , площадь сечения А одинакова по всей длине l (внешний контур стержня показан сплошными линиями);

Внешняя продольная растягивающая сила, направленная вдоль центральной оси, равна F , длина стержня получила приращение Δl , при этом его поперечный размер уменьшился на величину Δb (внешний контур стержня в деформированном положении показан пунктирными линиями).

l Δl

Рисунок 25. Продольно-поперечная деформация стержня при его центральном растяжении.

Приращение длины стержня Δl называется его абсолютной продольной деформацией, величина Δb – абсолютной поперечной деформацией. Величина Δl может трактоваться как продольное перемещение (вдоль оси z) концевого поперечного сечения стержня. Единицы измерения Δl и Δb те же, что и начальные размеры l и b (м, мм, см). В инженерных расчетах применяется следующее правило знаков для Δl : при растяжении участка стержня происходит увеличение его длины и величина Δl положительна; если же на участке стержня с начальной длиной l возникает внутренняя сжимающая сила N , то величина Δl отрицательна, т. к. происходит отрицательное приращение длины участка.

Если абсолютные деформации Δl и Δb отнести к начальным размерам l и b , то получим относительные деформации:


– относительная продольная деформация;

– относительная поперечная деформация.

Относительные деформации и являются безразмерными (как правило,

очень малыми) величинами, их именуют обычно е. о. д. – единицами относительных деформаций (например, ε = 5,24·10 -5 е. о. д.).

Абсолютное значение отношения относительной продольной деформации к относительной поперечной деформации является очень важной константой материала, называемой коэффициентом поперечной деформации или коэффициентом Пуассона (по фамилии французского ученого)

Как видно коэффициент Пуассона количественно характеризует соотношение между величинами относительной поперечной деформацией и относительной продольной деформацией материала стержня при приложении внешних сил вдоль одной оси. Значения коэффициента Пуассона определяются экспериментально и для различных материалов приводятся в справочниках. Для всех изотропных материалов значения лежит в пределах от 0 до 0,5 (для пробки близко к 0, для каучука и резины близко к 0,5). В частности, для прокатных сталей и алюминиевых сплавов в инженерных расчетах обычно принимается , для бетона .



Зная значение продольной деформации ε (например, в результате замеров при проведении экспериментов) и коэффициент Пуассона для конкретного материала (который можно взять из справочника) можно вычислить значение относительной поперечной деформации

где знак минус свидетельствует о том, что продольные и поперечные деформации всегда имеют противоположные алгебраические знаки (если стержень удлиняется на величину Δl растягивающей силой, то продольная деформация положительна, т. к. длина стержня получает положительное приращение, но при этом поперечный размер b уменьшается, т. е. получает отрицательное приращение Δb и поперечная деформация отрицательна; если же стержень будет сжиматься силой F , то, наоборот, продольная деформация станет отрицательной, а поперечная – положительной).

Внутренние усилия и деформации, возникающие в элементах конструкций под действием внешних нагрузок, представляют собой единый процесс, в котором все факторы взаимосвязаны между собой. Прежде всего, нас интересует взаимосвязь между внутренними усилиями и деформациями, в частности, при центральном растяжении-сжатии стержневых элементов конструкций. При этом, как и выше, будем руководствоваться принципом Сен-Венана: распределение внутренних усилий существенно зависит от способа приложения внешних сил к стержню лишь вблизи места нагружения (в частности, при приложении сил к стержню через малую площадку), а в частях, достаточно удаленных от мест


приложения сил распределение внутренних усилий зависит только от статического эквивалента этих сил, т. е. при действии растягивающих или сжимающих сосредоточенных сил будем считать, что в большей части объема стержня распределение внутренних сил будет равномерным (это подтверждается многочисленными экспериментами и опытом эксплуатации конструкций).

Английским ученым Робертом Гуком еще в 17-м веке была установлена прямая пропорциональная (линейная) зависимость (закон Гука) абсолютной продольной деформации Δl от растягивающей (или сжимающей) силы F . В 19-м веке английским ученым Томасом Юнгом сформулирована идея о том, что для каждого материала существует постоянная величина (названная им модулем упругости материала), характеризующая его способность сопротивляться деформированию при действии внешних сил. При этом Юнг первый указал на то, что линейный закон Гука справедлив только в определенной области деформирования материала, а именно – при упругих его деформациях .

В современном представлении применительно к одноосному центральному растяжению-сжатию стержней закон Гука используется в двух видах.

1) Нормальное напряжение в поперечном сечении стержня при центральном растяжении прямо пропорционально его относительной продольной деформации

, (1-й вид закона Гука),

где Е – модуль упругости материала при продольных деформациях, значения которого для различных материалов определены экспериментальным путем и занесены в справочники, которыми технические специалисты пользуются при проведении различных инженерных расчетов; так, для прокатных углеродистых сталей, широко применяемых в строительстве и машиностроении ; для алюминиевых сплавов ; для меди ; для других материалов значение Е всегда можно найти в справочниках (см., например, «Справочник по сопротивлению материалов» авторов Писаренко Г.С. и др.). Единицы измерения модуля упругости Е те же, что и единицы измерения нормальных напряжений, т. е. Па , МПа , Н/мм 2 и др.

2) Если в записанном выше 1-м виде закона Гука нормальное напряжение в сечении σ выразить через внутреннюю продольную силу N и площадь поперечного сечения стержня А , т. е. , а относительную продольную деформацию – через начальную длину стержня l и абсолютную продольную деформацию Δl , т. е. , то после простых преобразований получим формулу для практических расчетов (продольная деформация прямо пропорциональна внутренней продольной силе)

(2-й вид закона Гука). (18)

Из этой формулы следует, что с увеличением значения модуля упругости материала Е абсолютная продольная деформация стержня Δl уменьшается. Таким образом, сопротивляемость элементов конструкций деформациям (их жесткость) можно увеличить путем применения для них материалов с более высокими значениями модуля упругости Е . Среди широко применяемых в строительстве и машиностроении конструкционных материалов высоким значением модуля упругости Е обладают стали. Диапазон изменения величины Е для разных марок сталей небольшой: (1,92÷2,12)·10 5 МПа . У алюминиевых сплавов, например, величина Е примерно в три раза меньше, чем у сталей. Поэтому для


конструкций, к жесткости которых предъявляются повышенные требования, предпочтительными материалами являются стали.

Произведение называют параметром жесткости (или просто жесткостью) сечения стержня при его продольных деформациях (единицы измерения продольной жесткости сечения – Н , кН, МН ). Величина с = Е·А/l называется продольной жесткостью стержня длиной l (единицы измерения продольной жесткости стержня с Н/м , кН/м ).

Если стержень имеет несколько участков (n ) с переменной продольной жесткостью и сложной продольной нагрузкой (функция внутренней продольной силы от координаты z сечения стержня), то суммарная абсолютная продольная деформация стержня определится по более общей формуле

где интегрирование проводится в пределах каждого участка стержня длиной , а дискретное суммирование – по всем участкам стержня от i = 1 до i = n .

Закон Гука широко применяется в инженерных расчетах конструкций, поскольку большинство конструкционных материалов в процессе эксплуатации могут воспринимать весьма значительные напряжения, не разрушаясь в пределах упругих деформаций.

При неупругих (пластических или упруго-пластических) деформациях материала стержня прямое применение закона Гука неправомерно и, следовательно, вышеприведенные формулы использовать нельзя. В этих случаях следует применять другие расчетные зависимости, которые рассматриваются в специальных разделах курсов «Сопротивление материалов», «Строительная механика», «Механика твердого деформируемого тела», а также в курсе «Теория пластичности».

9. Абсолютная и относительная деформация при растяжении (сжатии). Коэффициент Пуассона.

Если под действием силы брус длиной изменил свою продольную величину на , то эта величина называется абсолютной продольной деформацией (абсолютное удлинение или укорочение). При этом наблюдается и поперечная абсолютная деформация .

Отношение называется относительной продольной деформацией, а отношение - относительной поперечной деформацией.

Отношение называется коэффициентом Пуассона, который характеризует упругие свойства материала.

Коэффициент Пуассона имеет значение . (для стали он равен )

10. Сформулировать закон Гука при растяжении (сжатии).

I форма. В поперечных сечениях бруса при центральном растяжении (сжатии) нормальные напряжения равны отношению продольной силы к площади поперечного сечения:

II форма. Относительная продольная деформация прямо пропорциональна нормальному напряжению , откуда .

11. Как определяются напряжения в поперечных и наклонных сечениях бруса?

– сила, равная произведению напряжения на площадь наклонного сечения :

12. По какой формуле можно определить абсолютное удлинение (укорочение) бруса?

Абсолютное удлинение (укорочение) бруса (стержня) выражается формулой:

, т.е.

Учитывая, что величина представляет собой жесткость поперечного сечения бруса длиной можно сделать вывод: абсолютная продольная деформация прямо пропорциональна продольной силе и обратно пропорциональна жесткости поперечного сечения. Этот закон впервые сформулировал Гук в 1660 году.

13. Как определяются температурные деформации и напряжения?

При повышении температуры у большинства материалов механические характеристики прочности уменьшаются, а при понижении температуры – увеличиваются. Например, у стали марки Ст3 при и ;

при и , т.е. .

Удлинение стержня при нагревании определяется по формуле , где - коэффициент линейного расширения материала стержня, - длина стержня.

Возникающее в поперечном сечении нормальное напряжение . При понижении температуры происходит укорочение стержня и возникают напряжения сжатия.

14. Дать характеристику диаграммы растяжения (сжатия).

Механические характеристики материалов определяются путем испытаний образцов и построением соответствующих графиков, диаграмм. Наиболее распространенным является статическое испытание на растяжение (сжатие).

Предел пропорциональности (до этого предела справедлив закон Гука);

Предел текучести материала;

Предел прочности материала;

Разрушающее (условное) напряжение;

Точка 5 соответствует истинному разрушающему напряжению.

1-2 площадка текучести материала;

2-3 зона упрочнения материала;

и - величина пластической и упругой деформации.

Модуль упругости при растяжении (сжатии), определяемый как: , т.е. .

15. Какие параметры характеризуют степень пластичности материала?

Степень пластичности материала может быть охарактеризовано величинами:

Остаточным относительным удлинением – как отношение остаточной деформации образца к первоначальной его длине:

где - длина образца после разрыва. Величина для различных марок стали находится в пределах от 8 до 28 %;

Остаточным относительным сужением – как отношение площади поперечного сечения образца в месте разрыва к первоначальной площади:

где - площадь поперечного сечения разорванного образца в наиболее тонком месте шейки. Величина находится в пределах от нескольких процентов для хрупкой высокоуглеродистой стали до 60 % для малоуглеродистой стали.

16. Задачи, решаемые при расчете на прочность при растяжении (сжатии).

Иметь представление о продольных и поперечных деформациях и их связи.

Знать закон Гука, зависимости и формулы для расчета напря­жений и перемещений.

Уметь проводить расчеты на прочность и жесткость стати­чески определимых брусьев при растяжении и сжатии.

Деформации при растяжении и сжатии

Рассмотрим деформацию бруса под действием продольной силы F (рис. 21.1).

В сопротивлении материалов принято рассчитывать деформа­ции в относительных единицах:

Между продольной и поперечной деформациями существует за­висимость

где μ - коэффициент поперечной деформации, или коэффициент Пуассона, -характеристика пластичности материала.

Закон Гука

В пределах упругих деформаций деформации прямо пропорци­ональны нагрузке:

- коэффициент. В современной форме:

Получим зависимость

Где Е - модуль упругости, ха­рактеризует жесткость материала.

В пределах упругости нормальные напряжения пропорциональ­ны относительному удлинению.

Значение Е для сталей в пределах (2 – 2,1) 10 5 МПа. При прочих равных условиях, чем жестче материал, тем меньше он деформируется:

Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии

Используем известные формулы.

Относительное удлинение

В результате получим зависимость между нагрузкой, размерами бруса и возникающей деформацией:

Δl - абсолютное удлинение, мм;

σ - нормальное напряжение, МПа;

l - начальная длина, мм;

Е - модуль упругости материала, МПа;

N - продольная сила, Н;

А - площадь поперечного сечения, мм 2 ;

Произведение АЕ называют жесткостью сечения.

Выводы

1. Абсолютное удлинение бруса прямо пропорционально вели­чине продольной силы в сечении, длине бруса и обратно пропорцио­нально площади поперечного сечения и модулю упругости.



2. Связь между продольной и поперечной деформациями зави­сит от свойств материала, связь определяется коэффициентом Пуас­сона, называемом коэффициентом поперечной деформации.

Коэффициент Пуассона: у стали μ от 0,25 до 0,3; у пробки μ = 0; у резины μ = 0,5.

3. Поперечные деформации меньше продольных и редко влияют на работоспособность детали; при необходимости поперечная дефор­мация рассчитывается через продольную.

где Δа - поперечное сужение, мм;

а о - начальный поперечный раз­мер, мм.

4. Закон Гука выполняется в зоне упругих деформаций, которая определяется при испытаниях на растяжение по диаграмме растяже­ния (рис. 21.2).

При работе пластические деформации не должны возни­кать, упругие деформации малы по сравнению с геометрическими размерами тела. Основные расче­ты в сопротивлении материалов проводятся в зоне упругих де­формаций, где действует закон Гука.

На диаграмме (рис. 21.2) закон Гука действует от точки 0 до точки 1 .

5. Определение деформации бруса под нагрузкой и сравнение ее с допускаемой (не нарушающей работоспособности бруса) называют расчетом на жесткость.

Примеры решения задач

Пример 1. Дана схема нагружения и размеры бруса до деформации (рис. 21.3). Брус защемлен, определить перемещение свободного конца.

Решение

1. Брус ступенчатый, по­этому следует построить эпюры продольных сил и нормальных напряжений.

Делим брус на участки нагружения, определяем продольные силы, строим эпюру продольных сил.

2. Определяем величины нор­мальных напряжений по сечениям с учетом изменений площади поперечного сечения.

Строим эпюру нормальных напряжений.

3. На каждом участке опре­деляем абсолютное удлинение. Результаты алгебраически сумми­руем.

Примечание. Балка за­щемлена, в заделке возникает неизвестная реакция в опоре, поэтому расчет начинаем со сво­бодного конца (справа).

1. Два участка нагружения:

участок 1:

растянут;

участок 2:


Три участка по напряжениям:


Пример 2. Для заданного ступенчатого бруса (рис. 2.9, а) построить эпюры продольных сил и нормаль­ных напряжений по его длине, а также определить пере­мещения свободного конца и сечения С, где приложена сила Р 2 . Модуль продольной упругости материала Е = 2,1 10 5 Н/"мм 3 .

Решение

1. Заданный брус имеет пять участков /, //, III, IV, V (рис. 2.9, а). Эпюра продольных сил показана на рис. 2.9, б.

2. Вычислим напряжения в поперечных сечениях каж­дого участка:

для первого

для второго

для третьего

для четвертого

для пятого

Эпюра нормальных напряжений построена на рис. 2.9, в.

3. Перейдем к определению перемещений поперечных сечений. Перемещение свободного конца бруса опреде­ляется как алгебраическая сумма удлинений (укорочений) всех его участков:

Подставляя числовые значения, получаем

4. Перемещение сечения С, в котором приложена сила Р 2 , определяется как алгебраическая сумма удлинений (уко­рочений) участков ///, IV, V:

Подставляя значения из предыдущего расчета, полу­чаем

Таким образом, свободный правый конец бруса пере­мещается вправо, а сечение, где приложена сила Р 2 , - влево.

5. Вычисленные выше значения перемещений можно полу­чить и другим путем, пользуясь принципом независимости действия сил, т. е. определяя перемещения от действия каждой из сил Р 1 ; Р 2; Р 3 в отдельности и суммируя ре­зультаты. Рекомендуем учащемуся проделать это само­стоятельно.

Пример 3. Определить, какое напряжение возни­кает в стальном стержне длиной l = 200 мм, если после приложения к нему растягивающих сил его длина стала l 1 = 200,2 мм. Е = 2,1*10 6 Н/мм 2 .

Решение

Абсолютное удлинение стержня

Продольная деформация стержня

Согласно закону Гука

Пример 4. Стенной кронштейн (рис. 2.10, а ) со­стоит из стальной тяги АВ и деревянного подкоса ВС. Площадь поперечного сечения тяги F 1 = 1 см 2 , площадь сечения подкоса F 2 = 25 см 2 . Определить горизонтальное и вертикальное перемещения точки В, если в ней под­вешен груз Q = 20 кН. Модули продольной упругости стали E ст = 2,1*10 5 Н/мм 2 , дерева Е д = 1,0*10 4 Н/мм 2 .

Решение

1. Для определения продольных усилий в стерж­нях АВ и ВС вырезаем узел В. Предполагая, что стерж­ни АВ и ВС растянуты, направляем возникающие в них усилия N 1 и N 2 от узла (рис. 2.10, 6 ). Составляем уравнения равновесия:

Усилие N 2 получилось со знаком минус. Это указы­вает на то, что первоначальное предположение о направ­лении усилия неверно - фактически этот стержень сжат.

2. Вычислим удлинение стальной тяги Δl 1 и укорочение подкоса Δl 2:

Тяга АВ удлиняется на Δl 1 = 2,2 мм; подкос ВС уко­рачивается на Δl 1 = 7,4 мм.

3. Для определения перемещения точки В мысленно разъединим стержни в этом шарнире и отметим их новые длины. Новое положение точки В определится, если де­формированные стержни АВ 1 и В 2 С свести вместе путем их вращения вокруг точек А и С (рис. 2.10, в). Точки В 1 и В 2 при этом будут перемещаться по дугам, которые вследствие их малости могут быть заменены отрезками прямых В 1 В" и В 2 В", соответственно перпендикулярными к АВ 1 и СВ 2 . Пересечение этих перпендикуляров (точка В") дает новое положение точки (шарнира) В.

4. На рис. 2.10, г диаграмма перемещений точки В изо­бражена в более крупном масштабе.

5. Горизонтальное пере­мещение точки В

Вертикальное

где составляющие отрезки определяются из рис. 2.10, г;

Подставляя числовые значения, окончательно получаем

При вычислении перемещений в формулы подстав­ляются абсолютные значения удлинений (укорочений) стержней.

Контрольные вопросы и задания

1. Стальной стержень длиной 1,5 м вытянулся под нагрузкой на 3 мм. Чему равно относительное удлинение? Чему равно относительное сужение? (μ = 0,25.)

2. Что характеризует коэффициент поперечной деформации?

3. Сформулируйте закон Гука в современной форме при растяжении и сжатии.

4. Что характеризует модуль упругости материала? Какова единица измерения модуля упругости?

5. Запишите формулы для определения удлинения бруса. Что характеризует произведение АЕ и как оно называется?

6. Как определяют абсолютное удлинение ступенчатого бруса, нагруженного несколькими силами?

7. Ответьте на вопросы тестового задания.



 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з