Найти первообразную функцию 2x 5 3x 2. Первообразная функции и общий вид

Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

Пример №1 .

Пусть (f(х))’ = 3х 2 . Найдем f(х).

Решение:

Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо

(х 3)’ = 3х 2 Однако, легко можно заметить, что f(х) находится неоднозначно. В качестве f(х) можно взять f(х)= х 3 +1 f(х)= х 3 +2 f(х)= х 3 -3 и др.

Т.к. производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

Любую из найденных функций f(х) называют первообразной для функции F`(х)= 3х 2

Определение.

Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞). Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Как мы уже заметили, данная функция имеет бесконечное множество первообразных.

Пример №2.

Функция есть первообразная для всех на промежутке (0; +∞), т.к. для всех ч из этого промежутка, выполняется равенство.

Задача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные. При решении этой задачи важную роль играет следующее утверждение:

Признак постоянства функции. Если F"(х) = 0 на некотором промежутке I, то функция F - постоянная на этом промежутке.

Доказательство.

Зафиксируем некоторое x 0 из промежутка I. Тогда для любого числа х из такого промежутка в силу формулы Лагранжа можно указать такое число c, заключенное между х и x 0 , что

F(x) - F(x 0) = F"(c)(x-x 0).

По условию F’ (с) = 0, так как с ∈1, следовательно,

F(x) - F(x 0) = 0.

Итак, для всех х из промежутка I

т е. функция F сохраняет постоянное значение.

Все первообразные функции f можно записать с помощью одной формулы, которую называютобщим видом первообразных для функции f. Справедлива следующая теорема (основное свойство первообразных ):

Теорема. Любая первообразная для функции f на промежутке I может быть записана в виде

F(x) + C, (1) где F (х) - одна из первообразных для функции f (x) на промежутке I, а С - произвольная постоянная.

Поясним это утверждение, в котором кратко сформулированы два свойства первообразной:

  1. какое бы число ни поставить в выражение (1) вместо С, получим первообразную для f на промежутке I;
  2. какую бы первообразную Ф для f на промежутке I ни взять, можно подобрать такое число С, что для всех х из промежутка I будет выполнено равенство

Доказательство.

  1. По условию функция F - первообразная для f на промежутке I. Следовательно, F"(х)= f (х) для любого х∈1, поэтому (F(x) + C)" = F"(x) + C"=f(x)+0=f(x), т. е. F(x) + C - первообразная для функции f.
  2. Пусть Ф (х) - одна из первообразных для функции f на том же промежутке I, т. е. Ф"(x) = f (х) для всех x∈I.

Тогда (Ф(x) - F (x))" = Ф"(х)-F’ (х) = f(x)-f(x)=0.

Отсюда следует в. силу признака постоянства функции, что разность Ф(х) - F(х) есть функция, принимающая некоторое постоянное значение С на промежутке I.

Таким образом, для всех х из промежутка I справедливо равенство Ф(х) - F(x)=С, что и требовалось доказать. Основному свойству первообразной можно придать геометрический смысл: графики любых двух первообразных для функции f получаются друг из друга параллельным переносом вдоль оси Оу

Вопросы к конспектам

Функция F(x) является первообразной для функции f(x). Найдите F(1), если f(x)=9x2 - 6x + 1 и F(-1) = 2.

Найдите все первообразные для функции

Для функции (x) = cos2 * sin2x, найдите первообразную F(x), если F(0) = 0.

Для функции найдите первообразную, график которой проходит через точку

Мы убедились в том, что производная имеет многочисленные применения: производная - это скорость движения (или, обобщая, скорость протекания любого процесса); производная - это угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; производная помогает решать задачи на оптимизацию.

Но в реальной жизни приходится решать и обратные задачи: например, наряду с задачей об отыскании скорости по известному закону движения встречается и задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой u = tg. Найти закон движения.

Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = u"(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна tg. Нетрудно догадаться, что

Сразу заметим, что пример решен верно, но неполно. Мы получили, что На самом деле, задача имеет бесконечно много решений: любая функция вида произвольная константа, может служить законом движения, поскольку


Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например, при t=0. Если, скажем, s(0) = s 0 , то из равенства получаем s(0) = 0+С, т.е.S 0 = С. Теперь закон движения определен однозначно:
В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения: например, возведение в квадрат (х 2) и извлечение квадратного корня синус(sinх) и арксинус (аrcsin х) и т.д. Процесс отыскания производной по заданной функции называют дифференцированием, а обратную операцию, т.е. процесс отыскания функции по заданной производной - интегрированием.
Сам термин «производная» можно обосновать «по-житейски»: функция у - f(х) «производит на свет» новую функцию у"= f"(x) Функция у = f(х) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у"=f"(х), первичный образ, или, короче, первообразная.

Определение 1. Функцию у = F(х) называют первообразной для функции у = f(х) на заданном промежутке X, если для всех х из X выполняется равенство F"(х)=f(х).

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры:

1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для всех х справедливо равенство (х 2)" =2х.
2) функция у - х 3 является первообразной для функции у-Зх 2 , поскольку для всех х справедливо равенство (х 3)" = Зх 2 .
3) Функция у-sinх является первообразной для функции у=соsх, поскольку для всех х справедливо равенство (sinх)" =соsх.
4) Функция являетя первообразной для функции на промежутке поскольку для всех х > 0 справедливо равенство
Вообще, зная формулы для отыскания производных, нетрудно составить таблицу формул для отыскания первообразных.


Надеемся, вы поняли, как составлена эта таблица: производная функции, которая записана во втором столбце, равна той функции, которая записана в соответствующей строке первого столбца (проверьте, не поленитесь, это очень полезно). Например, для функции у = х 5 первообразной, как вы установите, служит функция (см. четвертую строку таблицы).

Замечания: 1. Ниже мы докажем теорему о том, что если у = F(х) - первообразная для функции у = f(х), то у функции у = f(х)бесконечно много первообразных и все они имеют вид у = F(х) + С. Поэтому правильней было бы во втором столбце таблицы всюду добавить слагаемое С, где С - произвольное действительное число.
2. Ради краткости иногда вместо фразы «функция у = F(х) является первообразной для функции y = f(x)», говорят F(х) - первообразная для f(x)».

2. Правила отыскания первообразных

При отыскании первообразных, как и при отыскании производных, используются не только формулы (они указаны в таблице на с. 196), но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило отыскания первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Обращаем ваше внимание на некоторую «легковесность» этой формулировки. На самом деле следовало бы сформулировать теорему: если функции у = f(х) и у=g{х) имеют на промежутке X первообразные, соответственно у-F(х) и у-G(х), то и сумма функций у = f(х)+g(х) имеет на промежутке X первообразную, причем этой первообразной является функция у = F(х)+G(х). Но обычно, формулируя правила (а не теоремы), оставляют только ключевые слова - так удобнее для применения правила на практике

Пример 2. Найти первообразную для функции у = 2х + соз х.

Решение. Первообразной для 2х служит х"; первообразной для созх служит sin х. Значит, первообразной для функции у=2х + соз х будет служить функция у = х 2 + sin х (и вообще любая функция вида У = х 1 + sinх + С).
Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило отыскания первообразных.

Правило 2. Постоянный множитель можно вынести за знак первообразной.

Пример 3.

Ре ш е н и е. а) Первообразной для sin х служит -соз х; значит, для функции у = 5 sin х первообразной будет функция у = -5соз х.

б) Первообразной для соз x служит sin x; значит, для функции первообразной будет функция
в) Первообразной для х 3 служит первообразной для х служит первообразной для функции у = 1 служит функция у = х. Используя первое и второе правила отыскания первообразных, получим, что первообразной для функции у = 12х 3 + 8х-1 служит функция
Замечание. Как известно, производная произведения не равна произведению производных (правило дифференцирования произведения более сложное) и производная частного не равна частному от производных. Поэтому нет и правил для отыскания первообразной от произведения или первообразной от частного двух функций. Будьте внимательны!
Получим еще одно правило отыскания первообразных. Мы знаем, что производная функции у = f(кх+m) вычисляется по формуле

Это правило порождает соответствующее правило отыскания первообразных.
Правило 3. Если у = F(х) - первообразная для функции у = f(х), то первообразной для функции у=f(кх+m) служит функция

В самом деле,


Это и означает, что является первообразной для функции у = f(кх+m).
Смысл третьего правила заключается в следующем. Если вы знаете, что первообразной для функции у = f(х) является функция у = F(х),а.вам нужно найти первообразную функции у = f(кх+m), то действуйте так: берите ту же самую функцию F, но вместо аргумента х подставьте выражение кх+m; кроме того, не забудьте перед знаком функции записать «поправочный множитель»
Пример 4. Найти первообразные для заданных функций:

Решение , а) Первообразной для sin х служит -соз х; значит, для функции у = sin2х первообразной будет функция
б) Первообразной для соз х служит sin х; значит, для функции первообразной будет функция

в) Первообразной для х 7 служит значит, для функции у=(4-5х) 7 первообразной будет функция

3. Неопределенный интеграл

Выше мы уже отмечали, что задача отыскания первообразной для заданной функции у = f(х)имеет не одно решение. Обсудим этот вопрос более детально.

Доказательство. 1. Пусть у = F(х) - первообразная для функции у = f(х) на промежутке X. Это значит, что для всех х из X выполняется равенство x"(х) = f(х). Найдем производную любой функции вида у = F(х)+С:
(F(х) +С) = F"(х) +С = f(x) +0 = f(x).

Итак, (F(х)+С) = f(х). Это значит, что у = F(х) +С является первообразной для функции у = f(х).
Таким образом, мы доказали, что если у функции у = f(х) есть первообразная у=F(х), то у функции {f = f(x) бесконечно много первообразных, например, любая функция вида у = F(х)+С является первообразной.
2. Докажем теперь, что указанным видом функций исчерпывается все множество первообразных.

Пусть у=F 1 (х) и у=F(х) - две первообразные для функции У = f(x)на промежутке X. Это значит, что для всех х из промежутка X выполняются соотношения: F^ (х) = f(х); F"(х) = f(х).

Рaсмотрим функцию у = F 1 (х) -.F(х) и найдем ее производную: (F, (х) -F(х))" = F[(х)-F(х) = f(х) - f(х) = 0.
Известно, что если производная функции на промежутке X тождественно равна нулю, то функция постоянна на промежутке X (см. теорему 3 из § 35). Значит, F 1 (х)-F(х) =С, т.е. Fх) = F(х)+С.

Теорема доказана.

Пример 5. Задан закон изменения скорости от времени v = -5sin2t. Найти закон движения s = s(t), если известно, что в момент времени t=0 координата точки равнялась числу 1,5 (т.е. s(t) = 1,5).

Решение. Так как скорость - производная координаты как функции от времени, то нам прежде всего нужно найти первообразную от скорости, т.е. первообразную для функции v = -5sin2t. Одной из таких первообразных является функция , а множество всех первообразных имеет вид:

Чтобы найти конкретное значение постоянной С, воспользуемся начальными условиями, согласно которым, s(0) = 1,5. Подставив в формулу (1) значения t=0, S = 1,5, получим:

Подставив найденное значение С в формулу (1), получим интересующий нас закон движения:

Определение 2. Если функция у = f(х) имеет на промежутке X первообразную у = F(х), то множество всех первообразных, т.е. множество функций вида у = F(х) + С, называют неопределенным интегралом от функции у = f(x) и обозначают:

(читают: «неопределенный интеграл эф от икс дэ икс»).
В следующем параграфе мы выясним, в чем состоит скрытый смысл указанного обозначения.
Опираясь на имеющуюся в этом параграфе таблицу первообразных, составим таблицу основных неопределенных интегралов:

Опираясь на приведенные выше три правила отыскания первообразных, мы можем сформулировать соответствующие правила интегрирования.

Правило 1. Интеграл от суммы функций равен сумме интегралов этих функций:

Правило 2. Постоянный множитель можно вынести за знак интеграла:

Правило 3. Если

Пример 6. Найти неопределенные интегралы:

Решение , а) Воспользовавшись первым и вторым правилами интегрирования, получим:


Теперь воспользуемся 3-й и 4-й формулами интегрирования:

В итоге получаем:

б) Воспользовавшись третьим правилом интегрирования и формулой 8, получим:


в) Для непосредственного нахождения заданного интеграла у нас нет ни соответствующей формулы, ни соответствующего правила. В подобных случаях иногда помогают предварительно выполненные тождественные преобразования выражения, содержащегося под знаком интеграла.

Воспользуемся тригонометрической формулой понижения степени:

Тогда последовательно находим:

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача - задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \(s(t) = \frac{gt^2}{2} \). В самом деле
\(s"(t) = \left(\frac{gt^2}{2} \right)" = \frac{g}{2}(t^2)" = \frac{g}{2} \cdot 2t = gt \)
Ответ: \(s(t) = \frac{gt^2}{2} \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \(s(t) = \frac{gt^2}{2} \). На самом деле задача имеет бесконечно много решений: любая функция вида \(s(t) = \frac{gt^2}{2} + C \), где C - произвольная константа, может служить законом движения, поскольку \(\left(\frac{gt^2}{2} +C \right)" = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s 0 , то из равенства s(t) = (gt 2)/2 + C получаем: s(0) = 0 + С, т. е. C = s 0 . Теперь закон движения определен однозначно: s(t) = (gt 2)/2 + s 0 .

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2) и извлечение квадратного корня (\(\sqrt{x} \)), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием , а обратную операцию, т. е. процесс нахождения функции по заданной производной, - интегрированием .

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у" = f"(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у" = f"(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \(x \in X \) выполняется равенство F"(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2)" = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3)" = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))" = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) - первообразная для f(x), то kF(x) - первообразная для kf(x).

Теорема 1. Если y = F(x) - первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \(y=\frac{1}{k}F(kx+m) \)

Теорема 2. Если y = F(x) - первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \(\textstyle \int F(x)dx \). Сделаем подстановку \(x= \varphi(t) \) где \(\varphi(t) \) - функция, имеющая непрерывную производную.
Тогда \(dx = \varphi " (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\(\int F(x) dx = \int F(\varphi(t)) \cdot \varphi " (t) dt \)

Интегрирование выражений вида \(\textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям - применение следующей формулы для интегрирования:
\(\textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\(\textstyle \int u \cdot v" \cdot dx = u \cdot v - \int v \cdot u" \cdot dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$

Урок и презентация на тему: "Первообразная функция. График функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Алгебраические задачи с параметрами, 9–11 классы
"Интерактивные задания на построение в пространстве для 10 и 11 классов"

Первообразная функция. Введение

Ребята, вы умеем находить производные функций, используя различные формулы и правила. Сегодня мы будем изучать операцию, обратную вычислению производной. Понятие производной часто применяется в реальной жизни. Напомню: производная – это скорость изменения функции в конкретной точке. Процессы, связанные с движением и скоростью, хорошо описываются в этих терминах.

Давайте рассмотрим вот такую задачу: "Скорость движения объекта, по прямой, описывается формулой $V=gt$. Требуется восстановить закон движения.
Решение.
Мы хорошо знаем формулу: $S"=v(t)$, где S - закон движения.
Наша задача сводится к поиску функции $S=S(t)$, производная которой равна $gt$. Посмотрев внимательно, можно догадаться, что $S(t)=\frac{g*t^2}{2}$.
Проверим правильность решения этой задачи: $S"(t)=(\frac{g*t^2}{2})"=\frac{g}{2}*2t=g*t$.
Зная производную функции, мы нашли саму функцию, то есть выполнили обратную операцию.
Но стоит обратить внимание вот на такой момент. Решение нашей задачи требует уточнения, если к найденной функции прибавить любое число (константу), то значение производной не изменится: $S(t)=\frac{g*t^2}{2}+c,c=const$.
$S"(t)=(\frac{g*t^2}{2})"+c"=g*t+0=g*t$.

Ребята, обратите внимание: наша задача имеет бесконечное множество решений!
Если в задаче не задано начальное или какое-то другое условие, не забывайте прибавлять константу к решению. Например, в нашей задаче может быть задано положение нашего тела в самом начале движения. Тогда вычислить константу не трудно, подставив ноль в полученное уравнение, получим значение константы.

Как называется такая операция?
Операция обратная дифференцированию называется – интегрированием.
Нахождение функции по заданной производной – интегрирование.
Сама функция будет называться первообразной, то есть образ, то из чего была получена производная функции.
Первообразную принято записывать большой буквой $y=F"(x)=f(x)$.

Определение. Функцию $y=F(x)$ называется первообразной функции $у=f(x)$ на промежутке Х, если для любого $хϵХ$ выполняется равенство $F’(x)=f(x)$.

Давайте составим таблицу первообразных для различных функции. Ее надо распечатать в качестве памятки и выучить.

В нашей таблице никаких начальных условий задано не было. Значит к каждому выражению в правой части таблицы следует прибавить константу. Позже мы уточним это правило.

Правила нахождения первообразных

Давайте запишем несколько правил, которые нам помогут при нахождении первообразных. Все они похожи на правила дифференцирования.

Правило 1. Первообразная суммы равна сумме первообразных. $F(x+y)=F(x)+F(y)$.

Пример.
Найти первообразную для функции $y=4x^3+cos(x)$.
Решение.
Первообразная суммы равна сумме первообразных, тогда надо найти первообразную для каждой из представленных функций.
$f(x)=4x^3$ => $F(x)=x^4$.
$f(x)=cos(x)$ => $F(x)=sin(x)$.
Тогда первообразной исходной функции будет: $y=x^4+sin(x)$ или любая функция вида $y=x^4+sin(x)+C$.

Правило 2. Если $F(x)$ – первообразная для $f(x)$, то $k*F(x)$ – первообразная для функции $k*f(x)$. (Коэффициент можем спокойно выносить за функцию).

Пример.
Найти первообразные функций:
а) $y=8sin(x)$.
б) $y=-\frac{2}{3}cos(x)$.
в) $y={3x}^2+4x+5$.
Решение.
а) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная исходной функции примет вид: $y=-8cos(x)$.

Б) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная исходной функции примет вид: $y=-\frac{2}{3}sin(x)$.

В) Первообразной для $x^2$ служит $\frac{x^3}{3}$. Первообразной для x служит $\frac{x^2}{2}$. Первообразной для 1 служит x. Тогда первообразная исходной функции примет вид: $y=3*\frac{x^3}{3}+4*\frac{x^2}{2}+5*x=x^3+2x^2+5x$.

Правило 3. Если $у=F(x)$ - первообразная для функции $y=f(x)$, то первообразная для функции $y=f(kx+m)$ служит функция $y=\frac{1}{k}*F(kx+m)$.

Пример.
Найти первообразные следующих функций:
а) $y=cos(7x)$.
б) $y=sin(\frac{x}{2})$.
в) $y={-2x+3}^3$.
г) $y=e^{\frac{2x+1}{5}}$.
Решение.
а) Первообразной для $cos(x)$ служит $sin(x)$. Тогда первообразная для функции $y=cos(7x)$ будет функция $y=\frac{1}{7}*sin(7x)=\frac{sin(7x)}{7}$.

Б) Первообразной для $sin(x)$ служит минус $cos(x)$. Тогда первообразная для функции $y=sin(\frac{x}{2})$ будет функция $y=-\frac{1}{\frac{1}{2}}cos(\frac{x}{2})=-2cos(\frac{x}{2})$.

В) Первообразной для $x^3$ служит $\frac{x^4}{4}$, тогда первообразная исходной функции $y=-\frac{1}{2}*\frac{{(-2x+3)}^4}{4}=-\frac{{(-2x+3)}^4}{8}$.

Г) Слегка упростим выражение в степени $\frac{2x+1}{5}=\frac{2}{5}x+\frac{1}{5}$.
Первообразной экспоненциальной функции является сама экспоненциальная функция. Первообразной исходной функции будет $y=\frac{1}{\frac{2}{5}}e^{\frac{2}{5}x+\frac{1}{5}}=\frac{5}{2}*e^{\frac{2x+1}{5}}$.

Теорема. Если $у=F(x)$ - первообразная для функции $y=f(x)$ на промежутке Х, то у функции $y=f(x)$ бесконечно много первообразных, и все они имеют вид $у=F(x)+С$.

Если во всех примерах, которые были рассмотрены выше, требовалось бы найти множество всех первообразных, то везде следовало бы прибавить константу С.
Для функции $y=cos(7x)$ все первообразные имеют вид: $y=\frac{sin(7x)}{7}+C$.
Для функции $y=(-2x+3)^3$ все первообразные имеют вид: $y=-\frac{{(-2x+3)}^4}{8}+C$.

Пример.
По заданному закону изменения скорости тела от времени $v=-3sin(4t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 1,75.
Решение.
Так как $v=S’(t)$, нам надо найти первообразную для заданной скорости.
$S=-3*\frac{1}{4}(-cos(4t))+C=\frac{3}{4}cos(4t)+C$.
В этой задаче дано дополнительное условие - начальный момент времени. Это значит, что $t=0$.
$S(0)=\frac{3}{4}cos(4*0)+C=\frac{7}{4}$.
$\frac{3}{4}cos(0)+C=\frac{7}{4}$.
$\frac{3}{4}*1+C=\frac{7}{4}$.
$C=1$.
Тогда закон движения описывается формулой: $S=\frac{3}{4}cos(4t)+1$.

Задачи для самостоятельного решения

1. Найти первообразные функций:
а) $y=-10sin(x)$.
б) $y=\frac{5}{6}cos(x)$.
в) $y={4x}^5+{3x}^2+5x$.
2. Найти первообразные следующих функций:
а) $y=cos(\frac{3}{4}x)$.
б) $y=sin(8x)$.
в) $y={(7x+4)}^4$.
г) $y=e^{\frac{3x+1}{6}}$.
3. По заданному закону изменения скорости тела от времени $v=4cos(6t)$ найти закон движения $S=S(t)$, если в начальный момент времени тело имело координату равную 2.

Неопределенный интеграл

Основной задачей дифференциального исчисления было вычисление производной или дифференциала заданной функции. Интегральное исчисление, к изучению которого мы переходим, решает обратную задачу, а именно, отыскания самой функции по ее производной или дифференциалу. То есть, имея dF(х)= f(х)d (7.1) или F ′(х)= f(х) ,

где f(х) - известная функция, надо найти функцию F(х) .

Определение: Функция F(х) называется первообразной функции f(х) на отрезке , если во всех точках этого отрезка выполняется равенство: F′(х) = f(х) или dF(х)= f(х)d .

Например , одной из первообразных функций для функции f(х)=3х 2 будет F(х)= х 3 , т.к. (х 3)′=3х 2 . Но первоообразной для функции f(х)=3х 2 будет также и функции и , т.к. .

Итак, данная функция f(х)=3х 2 имеет бесконечное множество первоообразных, каждая из которых отличается лишь на постоянное слагаемое. Покажем, что этот результат имеет место и в общем случае.

Теорема Две различные первообразные одной и той же функции, определенной в некотором промежутке, отличаются одна от другой на этом промежутке на постоянное слагаемое.

Доказательство

Пусть функция f(х) определена на промежутке (a¸b) и F 1 (х) и F 2 (х) - первообразные, т.е. F 1 ′(х)= f(х) и F 2 ′(х)= f(х) .

Тогда F 1 ′(х)=F 2 ′(х)Þ F 1 ′(х) - F 2 ′(х) = (F 1 ′(х) - F 2 (х))′= 0 . Þ F 1 (х) - F 2 (х)=С

Отсюда, F 2 (х) = F 1 (х)+С

где С - константа (здесь использовано следствие из теоремы Лагранжа).

Теорема, таким образом, доказана.

Геометрическая иллюстрация . Если у = F 1 (х) и у = F 2 (х) – первообразные одной и той же функции f(х) , то касательная к их графикам в точках с общей абсциссой х параллельны между собой (рис. 7.1).

В таком случае расстояние между этими кривыми вдоль оси Оу остается постоянным F 2 (х) - F 1 (х)=С , то есть эти кривые в некотором понимании "параллельны" одна другой.

Следствие .

Прибавляя к какой-то первообразной F(х) для данной функции f(х) , определенной на промежутке Х , все возможные постоянные С , мы получим все возможные первообразные для функции f(х) .

Итак, выражение F(х)+С , где , а F(х) – некоторая первообразная функции f(х) включает все возможные первообразные для f(х) .

Пример 1. Проверить, являются ли функции первообразными для функции

Решение:

Ответ : первообразными для функции будут функции и

Определение: Если функция F(х) является некоторой первообразной для функции f(х), то множество всех первообразных F(х)+ С называют неопределенным интегралом от f(х) и обозначают:

∫f(х)dх.

По определению:

f(х) - подынтегральная функция,

f(х)dх - подынтегральное выражение

Из этого следует, чтоо неопределенный интеграл является функцией общего вида, дифференциал которой равен подынтегральному выражению, а производная от которой по переменной х равна подынтегральной функции во всех точках .

С геометрической точки зрения неопределенный интеграл представляет собой семейство кривых, каждая из которых получается путем сдвига одной из кривых параллельно самой себе вверх или вниз, то есть вдоль оси Оу (рис. 7.2).

Операция вычисления неопределенного интеграла от некоторой функции называется интегрированием этой функции.

Отметим, что если производная от элементарной функции всегда является элементарной функцией, то первоообразная от элементарной функции может не представляться при помощи конечного числа элементарных функций.

Рассмотрим теперь свойства неопределенного интеграла .

Из определения 2 вытекает:

1. Производная от неопределенного интеграла равна подынтегральной функции, то есть, если F′(х) = f(х) , то

2. Дифференциал от неопределенного интеграла равен подынтегральному выражению

. (7.4)

Из определения дифференциала и свойства (7.3)

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, то есть (7.5)



 
Статьи по теме:
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з
Рыба на решетке - самое вкусное и ароматное блюдо
Особенность приготовления рыбы на мангале состоит в том, что независимо от того, как вы будете жарить рыбу — целиком или кусочками, кожу снимать не следует. Тушку рыбы нужно разделать очень аккуратно — старайтесь разрезать ее таким образом, что голова и х
Ю.Андреев - Живой журнал! Андреев Ю.А. Юрий Андреев: биография
Андреев Ю.А. - об авторе Юрий Андреевич родился в Днепропетровске. В 1938 году семья переехала из Днепропетровска в Смоленск, где встретила войну (отец - кадровый военный). В 1944 семья переехала в Ленинград по месту службы отца. Окончил школу с золотой