Формула теореми піфагору. Теорема Піфагора: історія питання, докази, приклади практичного застосування

Потенціал до творчості зазвичай приписують гуманітарним дисциплінам, природно науковим залишаючи аналіз, практичний підхід та суху мову формул та цифр. Математику до гуманітарних предметів не віднесеш. Але без творчості в «цариці всіх наук» далеко не поїдеш – про це людям відомо з давніх-давен. З часів Піфагора, наприклад.

Шкільні підручники, на жаль, зазвичай не пояснюють, що в математиці важливо не лише зубрити теореми, аксіоми та формули. Важливо розуміти та відчувати її фундаментальні принципи. І при цьому спробувати звільнити свій розум від штампів та абеткових істин – лише в таких умовах народжуються всі великі відкриття.

До таких відкриттів можна віднести і те, що сьогодні ми знаємо як теорему Піфагора. З його допомогою ми спробуємо показати, що математика не тільки може, а й має бути цікавою. І що ця пригода підходить не тільки ботанікам у товстих окулярах, а всім, хто міцний розумом і сильним духом.

З історії питання

Строго кажучи, хоч теорема і називається «теорема Піфагора», сам Піфагор її не відкривав. Прямокутний трикутник та його особливі властивості вивчалися задовго до нього. Є дві полярні погляди на це питання. За однією версією Піфагор першим знайшов повноцінний доказ теореми. За іншим доказом не належить авторству Піфагора.

Сьогодні вже не перевіриш, хто має рацію, а хто помиляється. Відомо лише, що докази Піфагора, якщо вона будь-коли існувало, не збереглося. Втім, висловлюються припущення, що знаменитий доказ із «Початків» Евкліда може належати Піфагору, і Евклід його тільки зафіксував.

Також сьогодні відомо, що завдання про прямокутний трикутник зустрічаються в єгипетських джерелах часів фараона Аменемхета I, на вавилонських глиняних табличках періоду правління царя Хаммурапі, в давньоіндійському трактаті «Сульва сутра» та давньокитайському творі «Чжоубі-сунь».

Як бачите, теорема Піфагора займала уми математиків з найдавніших часів. Підтвердженням є і близько 367 різноманітних доказів, які існують сьогодні. У цьому з нею не може тягатися жодна інша теорема. Серед знаменитих авторів доказів можна згадати Леонардо да Вінчі та двадцятого президента США Джеймса Гарфілда. Все це говорить про надзвичайну важливість цієї теореми для математики: з неї виводиться або так чи інакше з нею пов'язана більшість теорем геометрії.

Докази теореми Піфагора

У шкільних підручниках переважно наводять алгебраїчні докази. Але суть теореми в геометрії, тож давайте розглянемо насамперед ті докази знаменитої теореми, які спираються на цю науку.

Доказ 1

Для найпростішого доказу теореми Піфагора для прямокутного трикутника потрібно встановити ідеальні умови: нехай трикутник буде не тільки прямокутним, але й рівнобедреним. Є підстави вважати, що саме такий трикутник спочатку розглядали математику давнини.

Твердження "квадрат, побудований на гіпотенузі прямокутного трикутника, рівновеликий сумі квадратів, побудованих на його катетах"можна проілюструвати наступним кресленням:

Подивіться на рівнобедрений прямокутний трикутник ABC: На гіпотенузі АС можна побудувати квадрат, що складається з чотирьох трикутників, що дорівнює вихідному АВС. А на катетах АВ і ПС побудовано по квадрату, кожен з яких містить по два аналогічні трикутники.

До речі, це креслення лягло основою численних анекдотів і карикатур, присвячених теоремі Піфагора. Найзнаменитіший, мабуть, це «Піфагорові штани на всі боки рівні»:

Доказ 2

Цей метод поєднує в собі алгебру та геометрію і може розглядатися як варіант давньоіндійського доказу математика Бхаскарі.

Побудуйте прямокутний трикутник зі сторонами a, b і c(Рис.1). Потім збудуйте два квадрати зі сторонами, рівними сумі довжин двох катетів, – (a+b). У кожному із квадратів виконайте побудови, як на рисунках 2 та 3.

У першому квадраті збудуйте чотири таких трикутники, як на малюнку 1. У результаті виходить два квадрати: один зі стороною a, другий зі стороною b.

У другому квадраті чотири побудовані аналогічні трикутники утворюють квадрат зі стороною, що дорівнює гіпотенузі. c.

Сума площ збудованих квадратів на рис.2 дорівнює площі збудованого нами квадрата зі стороною з на рис.3. Це легко перевірити, вирахувавши площі квадратів на рис. 2 за формулою. А площа вписаного квадрата на малюнку 3. шляхом віднімання площ чотирьох рівних між собою вписаних у квадрат прямокутних трикутників із площі великого квадрата зі стороною (a+b).

Записавши все це, маємо: a 2 +b 2 =(a+b) 2 – 2ab. Розкрийте дужки, проведіть усі необхідні алгебраїчні обчислення та отримайте, що a 2 +b 2 = a 2 +b 2. У цьому площа вписаного на рис.3. квадрата можна обчислити і за традиційною формулою S=c 2. Тобто. a 2 +b 2 =c 2- Ви довели теорему Піфагора.

Доказ 3

Сам же давньоіндійський доказ описаний у XII столітті в трактаті «Вінець знання» («Сіддханта широмані») і як головний аргумент автор використовує заклик, звернений до математичних талантів та спостережливості учнів та послідовників: «Дивись!».

Але ми розберемо цей доказ більш докладно:

Усередині квадрата побудуйте чотири прямокутні трикутники так, як це позначено на кресленні. Сторону великого квадрата, вона ж гіпотенуза, позначимо з. Катети трикутника назвемо аі b. Відповідно до креслення сторона внутрішнього квадрата це (a-b).

Використовуйте формулу площі квадрата S=c 2, щоб обчислити площу зовнішнього квадрата. І одночасно вирахуйте ту ж величину, склавши площу внутрішнього квадрата і площі всіх чотирьох прямокутних трикутників: (a-b) 2 2+4*1\2*a*b.

Ви можете використовувати обидва варіанти обчислення площі квадрата, щоб переконатися, що вони дадуть однаковий результат. І це дає вам право записати, що c 2 =(a-b) 2 +4*1\2*a*b. В результаті рішення ви отримаєте формулу теореми Піфагора c 2 =a 2 +b 2. Теорему доведено.

Доказ 4

Цей цікавий давньокитайський доказ отримав назву «Стілець нареченої» - через схожу на стілець фігуру, яка виходить в результаті всіх побудов:

У ньому використовується креслення, яке ми вже бачили на рис.3 у другому доказі. А внутрішній квадрат зі стороною з побудований так само, як у давньоіндійському доказі, наведеному вище.

Якщо подумки відрізати від креслення на рис.1 два зелені прямокутні трикутники, перенести їх до рис. протилежним сторонамквадрата зі стороною з і гіпотенузами прикласти до гіпотенуз бузкових трикутників, вийде постать під назвою «стілець нареченої» (рис.2). Для наочності можна те саме зробити з паперовими квадратами і трикутниками. Ви переконаєтеся, що «стілець нареченої» утворюють два квадрати: маленькі зі стороною bі великий зі стороною a.

Ці побудови дозволили давньокитайським математикам і нам слідом за ними дійти висновку, що c 2 =a 2 +b 2.

Доказ 5

Це ще один спосіб знайти рішення для теореми Піфагора, спираючись на геометрію. Називається він "Метод Гарфілда".

Побудуйте прямокутний трикутник АВС. Нам треба довести, що НД 2 =АС 2 +АВ 2.

Для цього продовжіть катет АСта побудуйте відрізок CD, який дорівнює катету АВ. Опустіть перпендикулярний ADвідрізок ED. Відрізки EDі АСрівні. З'єднайте точки Еі У, а також Еі Зі отримайте креслення, як на малюнку нижче:

Щоб довести терему, ми знову вдається до вже випробуваного нами способу: знайдемо площу фігури, що вийшла, двома способами і прирівняємо вирази один до одного.

Знайти площу багатокутника ABEDможна, склавши площу трьох трикутників, які її утворюють. Причому один із них, ЄСВ, не тільки прямокутним, а й рівнобедреним. Не забуваємо також, що АВ = CD, АС = EDі ВС = РЄ– це дозволить нам спростити запис та не перевантажувати його. Отже, S ABED =2*1/2(AB*AC)+1/2ВС 2.

При цьому очевидно, що ABED- Це трапеція. Тому обчислюємо її площу за формулою: S ABED = (DE + AB) * 1/2AD. Для наших обчислень зручніше та наочніше уявити відрізок ADяк суму відрізків АСі CD.

Запишемо обидва способи обчислити площу фігури, поставивши між ними знак рівності: AB*AC+1/2BC 2 =(DE+AB)*1/2(AC+CD). Використовуємо вже відому нам і описану вище рівність відрізків, щоб спростити праву частину запису: AB*AC+1/2BC 2 =1/2(АВ+АС) 2. А тепер розкриємо дужки і перетворюємо рівність: AB*AC+1/2BC 2 =1/2АС 2 +2*1/2(АВ*АС)+1/2АВ 2. Закінчивши всі перетворення, отримаємо саме те, що нам треба: НД 2 =АС 2 +АВ 2. Ми довели теорему.

Звісно, ​​цей список доказів далеко не повний. Теорему Піфагора також можна довести за допомогою векторів, комплексних чисел, диференціальних рівнянь, стереометрії тощо. І навіть фізики: якщо, наприклад, в аналогічних представлених на кресленнях квадратні та трикутні обсяги залити рідину. Переливаючи рідину, можна довести рівність площ і саму теорему у результаті.

Пару слів про Піфагорові трійки

Це питання мало чи взагалі не вивчається у шкільній програмі. А тим часом він є дуже цікавим і має велике значенняу геометрії. Піфагорові трійки застосовуються на вирішення багатьох математичних завдань. Уявлення про них може стати вам у нагоді в подальшій освіті.

То що таке Піфагорові трійки? Так називають натуральні числа, Зібрані по троє, сума квадратів двох з яких дорівнює третьому числу в квадраті.

Піфагорові трійки можуть бути:

  • примітивними (всі три числа – взаємно прості);
  • не примітивними (якщо кожне число трійки помножити на те саме число, вийде нова трійка, яка не є примітивною).

Ще до нашої ери стародавніх єгиптян заворожувала манія чисел Піфагорових трійок: у завданнях вони розглядали прямокутний трикутник із сторонами 3,4 та 5 одиниць. До речі, будь-який трикутник, сторони якого дорівнюють числам з піфагорової трійки, за замовчуванням є прямокутним.

Приклади Піфагорових трійок: (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20) ), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (10, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (27, 36, 45), (14 48, 50), (30, 40, 50) і т.д.

Практичне застосування теореми

Теорема Піфагора знаходить застосування у математиці, а й у архітектурі та будівництві, астрономії і навіть літературі.

Спочатку про будівництво: теорема Піфагора знаходить у ньому широке застосуванняу завданнях різного рівняскладності. Наприклад, подивіться на вікно у романському стилі:

Позначимо ширину вікна як bтоді радіус великого півкола можна позначити як Rі виразити через b: R=b/2. Радіус менших півкола також виразимо через b: r=b/4. У цьому завдання нас цікавить радіус внутрішнього кола вікна (назвемо його p).

Теорема Піфагора якраз і стане в нагоді, щоб обчислити р. Для цього використовуємо прямокутний трикутник, що на малюнку позначений пунктиром. Гіпотенуза трикутника складається із двох радіусів: b/4+p. Один катет є радіусом. b/4, інший b/2-p. Використовуючи теорему Піфагора, запишемо: (b/4+p) 2 =(b/4) 2 +(b/2-p) 2. Далі розкриємо дужки та отримаємо b 2 /16+ bp/2+p 2 =b 2 /16+b 2 /4-bp+p 2. Перетворимо цей вираз на bp/2=b 2 /4-bp. А потім розділимо всі члени на b, наведемо подібні, щоб отримати 3/2*p=b/4. І в результаті знайдемо, що p=b/6- Що нам і потрібно.

За допомогою теореми можна обчислити довжину крокви для двосхилим даху. Визначити, якою висоти вежа мобільного зв'язку потрібна, щоб сигнал досягав певного населеного пункту. І навіть стійко встановити новорічну ялинкуна міській площі. Як бачите, ця теорема живе не лише на сторінках підручників, а й часто буває корисною у реальному житті.

Щодо літератури, то теорема Піфагора надихала письменників з часів античності і продовжує це робити в наш час. Наприклад, німецького письменника ХІХ століття Адельберта фон Шаміссо вона надихнула на написання сонета:

Світло істини розсіється не скоро,
Але, засяявши, розсіється навряд
І, як тисячоліття тому,
Не викликає сумнівів і суперечки.

Наймудріші, коли торкнеться погляду
Світло істини, богів дякують;
І сто биків, заколоті, лежать.
Дар у відповідь Пифагора.

З того часу бики відчайдушно ревуть:
Навіки сполошило бичаче плем'я
Подія, згадана тут.

Їм здається: ось-ось настане час,
І знову їх у жертву принесуть
Якийсь великій теоремі.

(Переклад Віктора Топорова)

А в ХХ столітті радянський письменник Євген Велтистов у книзі «Пригоди Електроніка» доказам теореми Піфагора відвів цілий розділ. І ще півголови розповіді про двомірному світі, який міг би існувати, якби теорема Піфагора стала основним законом і навіть релігією окремо взятого світу. Жити в ньому було б набагато простіше, але й набагато нудніше: наприклад, там ніхто не розуміє значення слів «круглий» та «пухнастий».

А ще у книзі «Пригоди Електроніка» автор вустами вчителя математики Таратара каже: «Головне у математиці – рух думки, нові ідеї». Саме цей творчий політ думки породжує теорема Піфагора - не дарма у неї стільки різноманітних доказів. Вона допомагає вийти за межі звичного і на знайомі речі подивитися по-новому.

Висновок

Ця стаття створена, щоб ви могли заглянути за межі шкільної програми з математики та дізнатися не тільки про те докази теореми Піфагора, які наведені в підручниках «Геометрія 7-9» (Л.С. Атанасян, В.М. Руденко) та «Геометрія 7 -11» (А.В. Погорєлов), але й інші цікаві способи довести знамениту теорему. А також побачити приклади, як теорема Піфагора може застосовуватись у звичайному житті.

По-перше, ця інформація дозволить вам претендувати на вищі бали на уроках математики – відомості з предмета з додаткових джерелзавжди високо оцінюються.

По-друге, нам хотілося допомогти вам відчути, наскільки математика є цікавою наукою. Переконатися на конкретні приклади, що у ній є місце творчості. Ми сподіваємося, що теорема Піфагора та ця стаття надихнуть вас на самостійні пошуки та хвилюючі відкриття в математиці та інших науках.

Розкажіть нам у коментарях, чи видалися вам наведені у статті докази цікавими. Чи знадобилися вам ці відомості у навчанні. Напишіть нам, що думаєте про теорему Піфагора та цю статтю – нам буде приємно обговорити все це з вами.

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Середній рівень

Прямокутний трикутник. Повний ілюстрований гід (2019)

ПРЯМОКУТНИЙ ТРИКУТНИК. ПОЧАТКОВИЙ РІВЕНЬ.

У задачах прямий кут зовсім не обов'язково - лівий нижній, так що тобі потрібно навчитися впізнавати прямокутний трикутник і в такому вигляді,

і в такому,

і в такому

Що ж хорошого є у прямокутному трикутнику? Ну, по-перше, є спеціальні красиві назви для його сторін.

Увага на малюнок!

Запам'ятай і не плутай: катетів – два, а гіпотенуза – всього одна(Єдина, неповторна і найдовша)!

Ну ось назви обговорили, тепер найважливіше: Теорема Піфагора.

Теорема Піфагора.

Ця теорема - ключик до вирішення багатьох завдань за участю прямокутного трикутника. Її довів Піфагор у зовсім незапам'ятні часи, і з того часу вона принесла багато користі тим, хто її знає. А найкраще в ній те, що вона проста.

Отже, Теорема Піфагора:

Пам'ятаєш жарт: «Піфагорові штани на всі боки рівні!»?

Давай намалюємо ці піфагорові штани і подивимося на них.

Щоправда, схоже на якісь шорти? Ну і на які сторони, і де вона рівні? Чому і звідки виник жарт? А жарт цей пов'язаний саме з теоремою Піфагора, точніше з тим, як сам Піфагор формулював свою теорему. А формулював він її так:

«Сума площ квадратів, побудованих на катетах, дорівнює площі квадрата, побудованого на гіпотенузі»

Щоправда, трохи по-іншому звучить? І ось, коли Піфагор намалював твердження своєї теореми, якраз і вийшла така картинка.


На цьому малюнку сума площ маленьких квадратів дорівнює площі великого квадрата. А щоб діти краще запам'ятовували, що сума квадратів катетів дорівнює квадрату гіпотенузи, хтось дотепний і вигадав цей жарт про Піфагорові штани.

Чому ж ми зараз формулюємо теорему Піфагора

А Піфагор мучився і міркував про майдани?

Розумієш, у давнину не було… алгебри! Не було жодних позначень і таке інше. Не було написів. Уявляєш, як бідним древнім учням було жахливо запам'ятовувати все словами??! А ми можемо радіти, що ми маємо просте формулювання теореми Піфагора. Давай її ще раз повторимо, щоб краще запам'ятати:

Тепер уже має бути легко:

Квадрат гіпотенузи дорівнює суміквадратів катетів.

Ну ось, найголовнішу теорему про прямокутний трикутник обговорили. Якщо тобі цікаво, як вона доводиться, читай такі рівні теорії, а зараз підемо далі… у темний ліс… тригонометрії! До жахливих слів синус, косинус, тангенс та котангенс.

Синус, косинус, тангенс, котангенс у прямокутному трикутнику.

Насправді все зовсім не таке страшно. Звичайно, «справжнє» визначення синуса, косинуса, тангенсу та котангенсу потрібно дивитися у статті. Але дуже не хочеться, правда? Можемо порадувати: для вирішення задач про прямокутний трикутник можна просто заповнити такі прості речі:

А чому все тільки про кут? Де ж кут? Щоб у цьому розібратися, треба зазначити, як твердження 1 - 4 записуються словами. Дивись, розумій та запам'ятай!

1.
Взагалі звучить це так:

А що ж кут? Чи є катет, який знаходиться навпроти кута, тобто катет, що протилежить (для кута)? Звичайно є! Це катет!

А як же кут? Подивись уважно. Який катет прилягає до кутка? Звісно ж, катет. Значить, для кута катет – прилеглий, та

А тепер, увага! Подивися, що в нас вийшло:

Бачиш, як чудово:

Тепер перейдемо до тангенсу та котангенсу.

Як це тепер записати словами? Катет яким є по відношенню до кута? Протилежним, звісно – він «лежать» навпроти кута. А катет? Прилягає до кутку. Виходить, що в нас вийшло?

Бачиш, чисельник та знаменник помінялися місцями?

І тепер знову кути і здійснили обмін:

Резюме

Давайте коротко запишемо все, що ми дізналися.

Теорема Піфагора:

Головна теорема про прямокутний трикутник - теорема Піфагора.

теорема Піфагора

До речі, чи добре ти пам'ятаєш, що таке катети та гіпотенуза? Якщо не дуже, то дивись на малюнок – освіжай знання

Цілком можливо, що ти вже багато разів використовував теорему Піфагора, а ось чи ти замислювався, чому ж вірна така теорема. Як би її довести? А давай вчинимо, як давні греки. Намалюємо квадрат зі стороною.

Бачиш, як хитро ми поділили його сторони на відрізки довжин і!

А тепер з'єднаємо зазначені точки

Тут ми, щоправда, ще дещо відзначили, але ти сам подивися на малюнок і подумай, чому так.

Чому ж дорівнює площа більшого квадрата? Правильно, . А площа меншого? Звичайно, . Залишилася сумарна площа чотирьох куточків. Уяви, що ми взяли їх по два і притулили один до одного гіпотенузами. Що вийшло? Два прямокутники. Отже, площа «обрізків» дорівнює.

Давай тепер зберемо все разом.

Перетворюємо:

Ось і побували ми Піфагором – довели його теорему давнім способом.

Прямокутний трикутник та тригонометрія

Для прямокутного трикутника виконуються такі співвідношення:

Сінус гострого кутадорівнює відношенню протилежного катета до гіпотенузи

Косинус гострого кута дорівнює відношенню прилеглого катета до гіпотенузи.

Тангенс гострого кута дорівнює відношенню протилежного катета до прилеглого катета.

Котангенс гострого кута дорівнює відношенню прилеглого катета до протилежного катета.

І ще раз все це у вигляді таблички:

Це дуже зручно!

Ознаки рівності прямокутних трикутників

I. За двома катетами

ІІ. По катету та гіпотенузі

ІІІ. По гіпотенузі та гострому куту

IV. По катету та гострому куту

a)

b)

Увага! Тут дуже важливо, щоб катети були «відповідні». Наприклад, якщо буде так:

То ТРИКУТНИКИ НЕ РІВНІ, незважаючи на те, що мають один однаковий гострий кут.

Потрібно, щоб в обох трикутниках катет був прилеглим, або в обох - протилежним.

Ти помітив чим відрізняються ознаки рівності прямокутних трикутників від звичайних ознак рівності трикутників? Заглянь у тему « і зверни увагу те що, що з рівності « рядових » трикутників потрібна рівність трьох їх елементів: дві сторони і кут з-поміж них, два кута і сторона з-поміж них чи три стороны. А ось для рівності прямокутних трикутників достатньо лише двох відповідних елементів. Здорово, правда?

Приблизно така сама ситуація і з ознаками подоби прямокутних трикутників.

Ознаки подоби прямокутних трикутників

I. По гострому кутку

ІІ. За двома катетами

ІІІ. По катету та гіпотенузі

Медіана у прямокутному трикутнику

Чому це так?

Розглянемо замість прямокутного трикутника цілий прямокутник.

Проведемо діагональ і розглянемо точку – точку перетину діагоналей. Що відомо про діагоналі прямокутника?

І що з цього випливає?

Ось і вийшло, що

  1. - медіана:

Запам'ятай цей факт! Дуже допомагає!

А що ще дивовижніше, так це те, що вірне і зворотне твердження.

Що ж хорошого можна отримати з того, що медіана, проведена до гіпотенузи, дорівнює половині гіпотенузи? А давай подивимося на картинку

Подивись уважно. У нас є: тобто відстані від точки до всіх трьох вершин трикутника виявилися рівними. Але в трикутнику є всього одна точка, відстані від якої про всі три вершини трикутника рівні, і це - ЦЕНТР ОПИСАНОГО ОКРУЖЕННЯ. Виходить, що вийшло?

Ось давай ми почнемо з цього «крім того...».

Подивимося на в.

Але у подібних трикутників усі кути рівні!

Те саме можна сказати і про і

А тепер намалюємо це разом:

Яку ж користь можна отримати з цієї «троїстої» подоби.

Ну наприклад - дві формули для висоти прямокутного трикутника.

Запишемо відносини відповідних сторін:

Для знаходження висоти вирішуємо пропорцію та отримуємо першу формулу "Висота у прямокутному трикутнику":

Отже, застосуємо подібність: .

Що тепер вийде?

Знову вирішуємо пропорцію і отримуємо другу формулу:

Обидві ці формули потрібно дуже добре пам'ятати та застосовувати ту, яку зручніше. Запишемо їх ще раз

Теорема Піфагора:

У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів: .

Ознаки рівності прямокутних трикутників:

  • по двох катетах:
  • по катету та гіпотенузі: або
  • по катету та прилеглому гострому кутку: або
  • по катету та протилежному гострому куту: або
  • з гіпотенузи та гострого кута: або.

Ознаки подоби прямокутних трикутників:

  • одному гострому кутку: або
  • із пропорційності двох катетів:
  • з пропорційності катета та гіпотенузи: або.

Синус, косинус, тангенс, котангенс у прямокутному трикутнику

  • Синусом гострого кута прямокутного трикутника називається відношення протилежного катета до гіпотенузи:
  • Косинусом гострого кута прямокутного трикутника називається відношення прилеглого катета до гіпотенузи:
  • Тангенсом гострого кута прямокутного трикутника називається відношення протилежного катета до прилеглого:
  • Котангенсом гострого кута прямокутного трикутника називається відношення прилеглого катета до протилежного: .

Висота прямокутного трикутника: або.

У прямокутному трикутнику медіана, проведена з вершини прямого кута, Дорівнює половині гіпотенузи: .

Площа прямокутного трикутника:

  • через катети:

ВИМІР ПЛОЩІВ ГЕОМЕТРИЧНИХ ФІГУР.

§ 58. ТЕОРЕМА ПІФАГОРУ 1 .

__________
1 Піфагор - грецький вчений, який жив близько 2500 років тому (564-473 р. до н.е.).
_________

Нехай дано прямокутний трикутник, сторони якого а, bі з(чорт. 267).

Збудуємо на його сторонах квадрати. Площа цих квадратів відповідно дорівнює а 2 , b 2 та з 2 . Доведемо, що з 2 = а 2 + b 2 .

Побудуємо два квадрати МКОР і М"К"О"Р" (чорт. 268, 269), прийнявши за бік кожного з них відрізок, що дорівнює сумі катетів прямокутного трикутника АВС.

Виконавши у цих квадратах побудови, показані на кресленнях 268 і 269, побачимо, що квадрат МКОР розбився на два квадрати з площами а 2 та b 2 і чотири рівні прямокутні трикутники, кожен з яких дорівнює прямокутному трикутнику АВС. Квадрат М"К"О"Р" розбився на чотирикутник (він на кресленні 269 заштрихований) і чотири прямокутні трикутники, кожен з яких також дорівнює трикутнику АВС. Заштрихований чотирикутник - квадрат, оскільки сторони його рівні (кожна дорівнює гіпотенузі трикутника АВС, тобто. з), а кути - прямі / 1 + / 2 = 90 °, звідки / 3 = 90 °).

Таким чином, сума площ квадратів, побудованих на катетах (на кресленні 268 ці квадрати заштриховані), дорівнює площі квадрата МКОР без суми чотирьох площ рівних трикутниківа площа квадрата, побудованого на гіпотенузі (на кресленні 269 цей квадрат теж заштрихований), дорівнює площі квадрата М "К"О "Р", рівного квадрату МКОР, без суми площ чотирьох таких же трикутників. Отже, площа квадрата, побудованого на гіпотенузі прямокутного трикутника, дорівнює сумі площ квадратів, побудованих на катетах.

Отримуємо формулу з 2 = а 2 + b 2 , де з- гіпотенуза, аі b- Катети прямокутного трикутника.

Теорему Піфагора коротко прийнято формулювати так:

Квадрат гіпотенузи прямокутного трикутника дорівнює сумі квадратів катетів.

З формули з 2 = а 2 + b 2 можна отримати такі формули:

а 2 = з 2 - b 2 ;
b
2 = з 2 - а 2 .

Цими формулами можна використовувати для знаходження невідомої сторони прямокутного трикутника по двох даних сторонам.
Наприклад:

а) якщо дано катети а= 4 см, b=3 см, можна знайти гіпотенузу ( з):
з 2 = а 2 + b 2, тобто. з 2 = 4 2 + 3 2; з 2 = 25, звідки з= √25 =5 (см);

б) якщо дані гіпотенуза з= 17 см та катет а= 8 см, то можна знайти інший катет ( b):

b 2 = з 2 - а 2, тобто. b 2 = 17 2 - 8 2 ; b 2 = 225, звідки b= √225 = 15 (см).

Наслідок: Якщо у двох прямокутних трикутниках АВС та А 1 В 1 С 1 гіпотенузи зі з 1 рівні, а катет bтрикутника АВС більше катета b 1 трикутника А 1 В 1 C 1 ,
то катет атрикутника АВС менше катета а 1 трикутника А 1 В 1 C 1 . (Зробити креслення, що ілюструє це слідство.)

Насправді, на підставі теореми Піфагора отримаємо:

а 2 = з 2 - b 2 ,
а 1 2 = з 1 2 - b 1 2

У записаних формулах зменшувані рівні, а віднімається в першій формулі більше віднімається в другій формулі, отже, перша різниця менше другої,
тобто. а 2 < а 1 2 . Звідки а< а 1 .

Вправи.

1. Користуючись кресленням 270 довести теорему Піфагора для рівнобедреного прямокутного трикутника.

2. Один катет прямокутного трикутника дорівнює 12 см, інший – 5 см. Обчислити довжину гіпотенузи цього трикутника.

3. Гіпотенуза прямокутного трикутника дорівнює 10 см, один із катетів дорівнює 8 см. Обчислити довжину іншого катета цього трикутника.

4. Гіпотенуза прямокутного трикутника дорівнює 37 см, один із його катетів дорівнює 35 см. Обчислити довжину іншого катета цього трикутника.

5. Побудувати квадрат, за площею вдвічі більший за цей.

6. Побудувати квадрат, за площею вдвічі меншим від даного. Вказівка.Провести у даному квадратідіагоналі. Квадрати, збудовані на половинах цих діагоналей, будуть шуканими.

7. Катети прямокутного трикутника відповідно дорівнюють 12 см і 15 см. Обчислити довжину гіпотенузи цього трикутника з точністю до 0,1 см.

8. Гіпотенуза прямокутного трикутника дорівнює 20 см, один із його катетів дорівнює 15 см. Обчислити довжину іншого катета з точністю до 0,1 см.

9. Якої довжини мають бути сходи, щоб їх можна було приставити до вікна, що знаходиться на висоті 6 м, якщо нижній кінець сходів повинен відстояти від будівлі на 2,5 м? (Чорт. 271.)

Коли ви тільки починали вивчати квадратне коріння і способи вирішення ірраціональних рівнянь (рівностей, що містять невідому під знаком кореня), ви, ймовірно, отримали перше уявлення про їхнє практичному використанні. Вміння отримувати квадратний коріньз чисел також необхідно вирішення завдань застосування теореми Піфагора. Ця теорема пов'язує довжини сторін будь-якого прямокутного трикутника.

Нехай довжини катетів прямокутного трикутника (тих двох сторін, які сходяться під прямим кутом) будуть позначені літерами і , а довжина гіпотенузи (найдовшої сторони трикутника, розташованої навпроти прямого кута) буде позначена літерою . Тоді відповідні довжини пов'язані наступним співвідношенням:

Дане рівняння дозволяє знайти довжину сторони прямокутного трикутника у тому випадку, коли відома довжина двох інших сторін. Крім того, воно дозволяє визначити, чи трикутник, що розглядається, прямокутним, за умови, що довжини всіх трьох сторін заздалегідь відомі.

Розв'язання задач з використанням теореми Піфагора

Для закріплення матеріалу вирішимо такі завдання застосування теореми Піфагора.

Отже, дано:

  1. Довжина одного з катетів дорівнює 48, гіпотенузи - 80.
  2. Довжина катета дорівнює 84, гіпотенузи - 91.

Приступимо до вирішення:

a) Підстановка даних у наведене вище рівняння дає такі результати:

48 2 + b 2 = 80 2

2304 + b 2 = 6400

b 2 = 4096

b= 64 або b = -64

Оскільки довжина сторони трикутника не може бути виражена негативним числом, другий варіант автоматично відкидається.

Відповідь до першого малюнку: b = 64.

b) Довжина катета другого трикутника знаходиться тим самим способом:

84 2 + b 2 = 91 2

7056 + b 2 = 8281

b 2 = 1225

b= 35 або b = -35

Як і в попередньому випадку, негативне рішеннявідкидається.

Відповідь до другого малюнку: b = 35

Нам дано:

  1. Довжини менших сторін трикутника дорівнюють 45 і 55 відповідно, більшій – 75.
  2. Довжини менших сторін трикутника дорівнюють 28 і 45 відповідно, більшій – 53.

Вирішуємо завдання:

a) Необхідно перевірити, чи дорівнює сума квадратів довжин менших сторін даного трикутника квадрату довжини більшої:

45 2 + 55 2 = 2025 + 3025 = 5050

Отже, перший трикутник не прямокутний.

b) Виконується та сама операція:

28 2 + 45 2 = 784 + 2025 = 2809

Отже, другий трикутник прямокутний.

Спочатку знайдемо довжину найбільшого відрізка, утвореного точками з координатами (-2, -3) та (5, -2). Для цього використовуємо відому формулу для знаходження відстані між точками у прямокутній системі координат:

Аналогічно знаходимо довжину відрізка, укладеного між точками з координатами (-2, -3) та (2, 1):

Нарешті, визначаємо довжину відрізка між точками з координатами (2, 1) та (5, -2):

Оскільки має місце рівність:

то відповідний трикутник прямокутний.

Таким чином, можна сформулювати відповідь до завдання: оскільки сума квадратів сторін із найменшою довжиною дорівнює квадрату сторони з найбільшою довжиною, точки є вершинами прямокутного трикутника.

Основа (розташована строго горизонтально), косяк (розташований строго вертикально) і трос (протягнутий по діагоналі) формують прямокутний трикутник, відповідно, для знаходження довжини троса може використовуватися теорема Піфагора:

Таким чином, довжина троса складатиме приблизно 3,6 метра.

Дано: відстань від точки R до точки P (катет трикутника) дорівнює 24, від точки R до точки Q (гіпотенуза) – 26.

Отже, допомагаємо Віте вирішити завдання. Оскільки сторони трикутника, зображеного на малюнку, імовірно утворюють прямокутний трикутник, для знаходження довжини третьої сторони можна використовувати теорему Піфагора:

Отже, ширина ставка становить 10 метрів.

Сергій Валерійович

Переконайтеся, що цей трикутник є прямокутним, оскільки теорема Піфагора застосовна тільки до прямокутних трикутників.

  • У прямокутних трикутниках один із трьох кутів завжди дорівнює 90 градусам.

Прямий кут прямокутному трикутнику позначається значком у вигляді квадрата, а не у вигляді кривої, яка позначає непрямі кути.Позначте сторони трикутника. Катети позначте як "а" і "b" (катети - сторони, що перетинаються під прямим кутом), а гіпотенузу - як "с" (гіпотенуза - самавелика сторона

  • прямокутного трикутника, що лежить навпроти прямого кута).Теорема Піфагора дозволяє знайти будь-яку сторону прямокутного трикутника (якщо відомі дві інші сторони). Визначте, яку сторону (a, b, c) потрібно знайти.

    • Наприклад, дана гіпотенуза, що дорівнює 5, і дано катет, що дорівнює 3. У цьому випадку необхідно знайти другий катет. Ми повернемося до цього прикладу пізніше.
    • Якщо дві інші сторони невідомі, необхідно знайти довжину однієї з невідомих сторін, щоб мати можливість застосувати теорему Піфагора. Для цього використовуйте основні тригонометричні функції (якщо вам надано значення одного з непрямих кутів).
  • Підставте у формулу a 2 + b 2 = c 2 дані значення (або знайдені вами значення).Пам'ятайте, що a та b – це катети, а с – це гіпотенуза.

    • У прикладі напишіть: 3² + b² = 5².
  • Зведіть у квадрат кожну відому сторону.Або ж залиште ступеня – ви можете звести числа у квадрат пізніше.

    • У прикладі напишіть: 9 + b² = 25.
  • Відокремте невідому сторону на одній стороні рівняння.Для цього перенесіть відомі значенняна інший бік рівняння. Якщо ви знаходите гіпотенузу, то в теоремі Піфагора вона вже відокремлена з одного боку рівняння (тому робити нічого не потрібно).

    • У нашому прикладі перенесіть 9 на правий бікрівняння, щоб відокремити невідоме b². Ви отримаєте b? = 16.
  • Вийміть квадратний корінь з обох частин рівняння після того, як на одній стороні рівняння є невідоме (у квадраті), а на іншій стороні – вільний член (число).

    • У нашому прикладі b² = 16. Вийміть квадратний корінь з обох частин рівняння та отримайте b = 4. Таким чином, другий катет дорівнює 4.
  • Використовуйте теорему Піфагора в повсякденному житті, так як її можна застосовувати в великому числіпрактичних ситуацій.

    • Для цього навчитеся розпізнавати прямокутні трикутники у повсякденному житті – у будь-якій ситуації, в якій два предмети (або лінії) перетинаються під прямим кутом, а третій предмет (або лінія) з'єднує (по діагоналі) верхівки двох перших предметів (або ліній), ви можете використовувати теорему Піфагора, щоб знайти невідому сторону (якщо дві інші сторони відомі). Приклад: дані сходи, притулені до будівлі. Нижня частина сходів знаходиться за 5 метрів від основи стіни.Верхня частина
      • "за 5 метрів від основи стіни" означає, що а = 5; «знаходиться в 20 метрах від землі» означає, що b = 20 (тобто вам дано два катети прямокутного трикутника, оскільки стіна будівлі та поверхня Землі перетинаються під прямим кутом). Довжина сходів є довжиною гіпотенузи, яка невідома.
        • a² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • з = √425
        • з = 20,6. Таким чином, приблизна довжина сходів дорівнює 206 метрів.


  •  
    Статті потемі:
    Як і скільки пекти яловичину
    Запікання м'яса в духовці популярне серед господарок. Якщо всі правила дотримані, готову страву подають гарячою та холодною, роблять нарізки для бутербродів. Яловичина в духовці стане блюдом дня, якщо приділити увагу підготовці м'яса для запікання. Якщо не врахувати
    Чому сверблять яєчка і що робити, щоб позбутися дискомфорту
    Багато чоловіків цікавляться, чому в них починають свербіти яйця і як усунути цю причину. Одні вважають, що це через некомфортну білизну, інші думають, що справа в нерегулярній гігієні. Так чи інакше, цю проблему слід вирішувати.
    Чому сверблять яйця
    Фарш для котлет з яловичини та свинини: рецепт з фото
    Донедавна я готував котлети лише з домашнього фаршу.  Але буквально днями спробував приготувати їх зі шматка яловичої вирізки, чесно скажу, вони мені дуже сподобалися і припали до смаку всій моїй родині.  Для того щоб котлетки отримав
    Схеми виведення космічних апаратів Орбіти штучних супутників Землі