Последние разработки по монтажу термостабилизаторов грунта. Термостабилизаторы грунтов. Полимерконтейнерное балластирующее устройство-модернизированная конструкция сдвоенная пкбу-мкс

Изобретение относится к строительству в зонах вечной мерзлоты, а именно к термостабилизаторам грунта для замораживания фундаментов. Термостабилизатор грунта содержит герметичный вертикально расположенный корпус с теплоносителем, в верхней и нижних частях которого расположены зоны теплообмена. При этом по меньшей мере в одной зоне теплообмена установлена кольцеобразная вставка, имеющая повышенную удельную поверхность. Наружная поверхность вставки контактирует с внутренней поверхностью корпуса в зоне теплообмена. Площадь поперечного сечения кольцеобразной вставки не превышает 20% площади поперечного сечения полости корпуса. Технический результат состоит в повышении теплопередающих характеристик при сохранении компактности термостабилизатора, а также повышении эффективности работы термостабилизатора грунта. 5 з.п. ф-лы, 3 ил.

Изобретение относится к строительству в зонах вечной мерзлоты, например около свай опор ЛЭП, нефте- и газопроводов и других объектов строительства, а именно к термостабилизаторам грунта для замораживания фундаментов.

Известен двухфазный термосифон, содержащий по крайней мере один частично заполненный теплоносителем герметичный корпус с зонами испарения и конденсации и расположенный в последней зоне радиатор с продольными ребрами (Термосваи в строительстве на севере. - Л.: Стройиздат, 1984 г., с. 12).

Также известен двухфазный термосифон, содержащий по крайней мере один частично заполненный теплоносителем герметичный корпус с зонами испарения и конденсации и расположенный в последней зоне радиатор с продольными ребрами (Патент России 96939 МПК F28D 15/00 от 18.02.2010 г.).

Недостатком известных термосифонов является их относительно низкая эффективность, ввиду чего для передачи больших тепловых потоков требуется значительное увеличение массогабаритных характеристик двухфазного термосифона.

В качестве прототипа была выбрана конструкция, описанная в статье, размещенной в интернете по адресу: http://iheatpipe.ru/doc/termostab.pdf. В статье сказано, что «в корпусах из любой стали необходимо создавать капиллярную структуру в зоне испарения (винтовая нарезка, спираль, канавки, сетка и т.д.). Следует отметить, что в ТС (термостабилизатор) из алюминиевых сплавов (ТМД-5 всех моделей, ТТМ и ДОУ-1) при необходимости на внутренней поверхности зоны испарения, а в остальных ТС практически всегда используются пружины или спирали. Так, например, в ТС типа ТСГ-6, ТН и ТСН капиллярная структура выполняется в виде витков спирали из нержавеющей проволоки диаметром (0,8-1,2) мм с шагом спирали 10 мм на внутренней поверхности ЗИ ДТ». Однако предложенные в статье варианты структур (винтовая нарезка, канавки, сетка и т.д.) весьма сложны в изготовлении на внутренней поверхности труб, из-за чего и предложен вариант со спиралью. Кроме того, приведенные в статье размеры (спираль из проволоки диаметром 0,8-1,2 мм с шагом 10 мм) не позволяют говорить о капиллярности структуры в зоне испарения. Предложенная спираль или пружина незначительно увеличивает площадь теплообмена и обладает недостаточной эффективностью.

Задачей предлагаемого изобретения является создание термостабилизатора грунта, выполненного в виде тепловой трубы с положительной ориентацией, с увеличенной площадью теплообмена для повышения теплопередающих характеристик.

Техническим результатом является повышение эффективности работы термостабилизатора грунта, повышение теплопередающих характеристик при сохранении его компактности.

Задача решается, а технический результат достигается тем, что термостабилизатор грунта содержит герметичный вертикально расположенный корпус с теплоносителем. В верхней и нижних частях корпуса расположены зоны теплообмена. При этом по меньшей мере в одной зоне теплообмена установлена кольцеобразная вставка, имеющая повышенную удельную поверхность. Наружная поверхность кольцеобразной вставки контактирует с внутренней поверхностью корпуса в зоне теплообмена, при этом площадь поперечного сечения кольцеобразной вставки не превышает 20% от площади поперечного сечения внутренней полости корпуса.

Кольцеобразная вставка может быть выполнена из металла с губчатой структурой, хаотично спутанной металлической проволоки или представлять собой набор мелкоячеистых тонких металлических плоских сеток.

Кольцеобразная вставка с одного торца может быть снабжена гофрированным конусообразным кольцом. Причем диаметр внутреннего отверстия конусообразного кольца меньше внутреннего диаметра кольцеобразной вставки. На внешней поверхности конусообразного кольца выполнены выступы для контакта с внутренней поверхностью корпуса.

Предлагаемое в изобретении решение позволяет увеличивать площадь теплообмена в термостабилизаторе грунта более чем в 15 раз без увеличения внешних размеров устройства.

В дальнейшем изобретение иллюстрируется подробным описанием конкретных, но не ограничивающих настоящее решение, примеров его выполнения и прилагаемым чертежами, на которых изображено:

фиг. 1 - вариант выполнения термостабилизатора грунта с кольцеобразной вставкой из набора мелкоячеистых тонких металлических плоских сеток;

фиг. 2 - вариант выполнения термостабилизатора грунта с кольцеобразной вставкой из хаотично спутанной металлической проволоки;

фиг. 3 - гофрированное кольцо.

Термостабилизатор грунта с кольцеобразной вставкой из набора мелкоячеистых тонких металлических плоских сеток схематично изображен на фиг. 1. Термостабилизатор состоит из герметичного вертикально расположенного корпуса 1, выполненного, например, в виде полого цилиндра. Торцы корпуса 1 с двух сторон герметично закрыты крышками 2. Внутри корпуса 1 имеются две зоны теплообмена в его верхней и нижней частях. Корпус 1 в районе верхней зоны теплообмена снабжен радиатором, теплоотводящими элементами которого выступают пластины 3, установленные на внешней поверхности корпуса 1. Во внутреннюю полость корпуса 1 заливают теплоноситель, в качестве которого можно использовать фреон или аммиак или какой-либо другой известный теплоноситель.

Предлагаемую согласно изобретению кольцеобразную вставку можно устанавливать как в верхней зоне теплообмена, так и в нижней зоне. Однако предпочтительней кольцеобразную вставку устанавливать в обеих зонах. Конструктивно кольцеобразная вставка может быть выполнена в виде кассеты 4, как это представлено на фиг. 1. Кассета 4 состоит из набора колец, выполненных из сетки, либо из набора пластин с множеством отверстий. Кассета 4 состоит из двух торцевых пластин 7, которые стянуты продольными стержнями 6 при помощи гаек 5. Между торцевыми пластинами 7 располагают набор колец из сетки или пластин с отверстиями. Внешний диаметр кассеты 4 выполнен равным внутреннему диаметру корпуса 1. Кассету 4 в корпус 1 устанавливают с натягом, для чего корпус 1 нагревают, а кассету охлаждают, после чего кассету устанавливают в корпус 1. Такая установка позволяет достичь плотного прилегания вставки к корпусу 1. Дополнительно возможно установить гофрированное кольцо 8, представленное на фиг. 3. Гофрированное кольцо 8 имеет внутренний диаметр меньше внутреннего диаметра кольцеобразной вставки, что позволяет улавливать охлажденные капли теплоносителя, свободно падающие внутри полости вставки, и направлять их на внутреннюю поверхность корпуса 1, что позволяет увеличить степень охлаждения корпуса в этой зоне.

Аналогичную конструкцию может иметь и кольцеобразная вставка, выполненная из металла с губчатой структурой с открытыми порами.

На фиг. 2 показана конструкция термостабилизатора грунта, в корпусе 1 которого установлена кольцеобразная вставка из хаотично спутанной металлической проволоки. Вставка установлена в верхней зоне теплообмена. Термостабилизатор состоит из корпуса 1, выполненного в виде полого цилиндра. Торцы корпуса 1 с двух сторон закрыты герметично крышками 2 (вторая крышка на фиг. 2 не показана). Корпус 1 в верхней зоне теплообмена снабжен радиатором, теплоотводящими элементами которого выступают пластины 3, установленные на внешней поверхности корпуса 1.

Конструктивно кольцеобразная вставка из хаотично спутанной металлической проволоки также может быть выполнена в виде кассеты 9, как это представлено на фиг. 2. Кассета 9 состоит из спутанной металлической проволоки (на фиг.2 не обозначена), расположенной между двумя торцевыми пластинами 7, которые стянуты продольными стержнями 6 при помощи гаек 5. Кольцеобразная вставка из хаотично спутанной металлической проволоки имеет форму цилиндра. Внутри цилиндра из спутанной металлической проволоки расположена распорная спиральная пружина 10. После установки кассеты в корпус 1 термостабилизатора сжимают распорную спиральную пружину 10, заворачивая гайки 5. При этом распорная спиральная пружина 10 расширяется и прижимает внешнюю сторону цилиндра из спутанной металлической проволоки к внутренней поверхности корпуса 1. Конструкция кассеты 9 позволяет достаточно сильно прижать вставку из хаотично спутанной металлической проволоки к внутренней стенке корпуса 1, что обеспечивает максимальный теплообмен.

Термостабилизатор работает следующим образом. Термостабилизатор представляет собой тепловую трубу с положительной ориентацией согласно ГОСТ 23073-78, т.е. конденсационная область находится выше испарительной области тепловой трубы.

В зимнее время года теплоноситель, попадая в верхнюю зону теплообмена, охлаждается. Этому способствуют низкие температуры окружающего воздуха. Охлажденный теплоноситель в виде капель под действием силы тяжести опускается в нижнюю зону теплообмена. Для большей эффективности охлаждения верхняя зона теплообмена снабжена радиатором, выполненным в виде пластин 3, установленных на внешней поверхности корпуса 1. Изобретение позволяет значительно повысить эффективность охлаждения за счет увеличения площади теплообмена благодаря использованию вставки, имеющей повышенную удельную поверхность.

В нижней зоне теплообмена термостабилизатора происходит теплообмен между теплоносителем с пониженной температурой и грунтом, имеющим температуру выше температуры жидкого теплоносителя. Жидкий теплоноситель нагревается, переходит в газообразное состояние и поднимается вверх по центральному отверстию корпуса 1 и кольцеобразной вставки, при этом грунт с наружной стороны корпуса 1 промораживается. При использовании кольцеобразной вставки, имеющей повышенную удельную поверхность, повышается эффективность теплообмена, однако, поперечная площадь кольцеобразной вставки не должна превышать 20% от площади поперечного сечения внутренней полости корпуса 1. При занятости до 20% площади поперечного сечения полости корпуса 1 вставкой не происходит снижения скорости движения паров теплоносителя, что не ухудшает эффективность теплообмена. Если площадь поперечного сечения вставки превысит 20%, то скорость подъема теплоносителя существенно снижается и эффективность теплообмена снижается.

Также для повышения эффективности работы термостабилизатора возможно применять гофрированное кольцо 8, которое позволяет направлять теплоноситель в виде капель из центральной осевой зоны термостабилизатора на стенку корпуса 1, что также повышает эффективность работы.

Применение предложенного термостабилизатора грунта согласно изобретению позволяет значительно повысить эффективность его работы, при этом его внешние размеры не изменяются.

1. Термостабилизатор грунта, содержащий герметичный вертикально расположенный корпус с теплоносителем, в верхней и нижних частях которого расположены зоны теплообмена, при этом по меньшей мере в одной зоне теплообмена установлена кольцеобразная вставка, имеющая повышенную удельную поверхность, наружная поверхность вставки контактирует с внутренней поверхностью корпуса в зоне теплообмена, причем площадь поперечного сечения кольцеобразной вставки не превышает 20% площади поперечного сечения полости корпуса.

2. Термостабилизатор грунта по п. 1, отличающийся тем, что кольцеобразная вставка выполнена из металла с губчатой структурой с открытыми сквозными порами.

3. Термостабилизатор грунта по п. 1, отличающийся тем, что кольцеобразная вставка выполнена из хаотично спутанной металлической проволоки.

4. Термостабилизатор грунта по п. 1, отличающийся тем, что кольцеобразная вставка представляет собой набор мелкоячеистых тонких металлических плоских сеток.

5. Термостабилизатор грунта по п. 1, отличающийся тем, что кольцеобразная вставка выполнена в виде кассеты.

6. Термостабилизатор грунта по п. 1, отличающийся тем, что с одного торца кольцеобразная вставка снабжена гофрированным конусообразным кольцом, причем диаметр внутреннего отверстия кольца меньше внутреннего диаметра вставки, а на внешней поверхности кольца выполнены выступы для контакта с внутренней поверхностью корпуса.

Похожие патенты:

Изобретение относится к строительству промышленных и гражданских объектов в криолитозоне с целью обеспечения их надежности. Термосифон включает конденсатор, испаритель и транзитный участок между ними в виде круглой с обеих сторон заглушенной трубы, вертикально установленной и погруженной на глубину испарителя в грунт, из полости трубы откачан воздух, взамен полость заправлена аммиаком, часть полости заполнена жидким аммиаком, остальной объем - насыщенным паром аммиака.

Изобретение относится к области строительства в районах со сложными инженерно-геокриологическими условиями и может быть использовано для термостабилизации многолетнемерзлых и замораживания слабых пластичномерзлых грунтов.

Изобретение относится к области строительства на многолетнемерзлых грунтах с искусственным охлаждением грунтов основания и одновременным обогревом сооружения с помощью теплового насоса.

Изобретение относится к устройствам для теплообмена в дренажной системе, а также на строительной площадке. Устройство для теплообмена в дренажной системе содержит теплообменный компонент, имеющий наружный канал и внутренний канал, причем внутренний канал расположен внутри наружного канала.

Изобретение относится к области строительства в районах распространения многолетне-мерзлых грунтов и, конкретно, к устройствам, обеспечивающим мерзлое состояние грунтов оснований сооружений при проектном значении отрицательной температуры.

Изобретение относится к строительству гидротехнических сооружений и может быть применено для создания ограждающей конструкции, предназначенной для защиты добывающей платформы плавучего типа в ледовых условиях арктического шельфа.

Изобретение относится к строительству, а именно к устройствам, используемым при термомелиорации грунтов основания фундаментов сооружений, возводимых в районах распространения вечной и сезонной мерзлоты. Охлаждающее устройство для термостабилизации грунтов оснований зданий и сооружений содержит вертикальный двухфазный термостабилизатор, подземная часть которого помещена в футляр, заполненный теплопроводящей жидкостью, и закреплена с помощью радиального и упорного подшипников, обеспечивающих свободное вращение корпуса термостабилизатора вокруг вертикальной оси, за счет силы ветра, набегающего на чашки-лопасти ветроколеса, закрепленные на надземной части термостабилизатора под углом 120 градусов относительно друг друга. Технический результат состоит в обеспечении равномерного распределения теплового потока в системе грунт-футляр-термотабилизатор за счет обеспечения истечения хладагента из зоны конденсации к зоне испарения в виде тонкой кольцевой пленки по внутреннему периметру корпуса термостабилизатора, а также создания вынужденной конвекции теплоносителя в футляре, повышении эффективности работы устройства. 2 ил.

Изобретение относится к области строительства в северных районах и предназначено для возведения ледяных инженерных сооружений, аккумуляции холода и образования сводчатых ледяных сооружений для хранения на (не)плавучих ледяных или ледопородных платформах на шельфах морей. Технический результат - повышение надежности ледяного сооружения, который достигается тем, что в способе возведения ледяного сооружения, включающем разработку площадки, на которой устанавливают надувные конструкции с последующим их демонтажом и перемещением по мере необходимости, заполнение их воздухом, послойное намораживание пайкерита путем набрызга или послойного полива водяной пульпы. Она содержит древесные опилки или какого-либо другого вида древесную массу, дополнительно перед намораживанием пайкерита надувные конструкции покрывают геоматериалом в виде водопроницаемого геосинтетического материала: геосетки или георешетки. 1 з.п. ф-лы, 3 ил.

Изобретение относится к теплотехнике в области строительства, а именно к термостабилизации грунтовых оснований свайных фундаментов опор трубопровода и трубопроводов подземной прокладки, расположенных на многолетнемерзлых грунтах. Способ термостабилизации грунтов оснований свайных фундаментов опор трубопровода и трубопроводов подземной прокладки заключается в том, что производят выемку льдистых грунтов в основаниях свайных фундаментов опор трубопровода, трубопроводов подземной прокладки и укладку в выемку композитного материала, установку по меньшей мере двух термостабилизаторов грунта по краям выемки, при этом композитный материал имеет состав при соотношении компонентов, мас. %: гравелистый песчаный грунт 60-70, вспененный модифицированный полимер 20-25, жидкий теплоноситель 5-20 или крупный песчаный грунт 70-80, вспененный модифицированный полимер 10-15, жидкий теплоноситель 5-20. Для пропитки полимера выбирают жидкий теплоноситель, характеризующийся высокой теплоемкостью и низкой температурой замерзания до -25°C. Технический результат состоит в повышении надежности конструкции при строительстве свайных фундаментов опор трубопровода и трубопроводов подземной прокладки, расположенных на многолетнемерзлых грунтах, обеспечении безопасной эксплуатации магистральных нефтепроводов на проектных режимах в течение заданного срока на территории распространения многолетнемерзлых грунтов. 5 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области строительства трубопроводов подземной прокладки и может быть использовано для обеспечения термостабилизации грунтов при подземной прокладке трубопроводов на многолетнемерзлых и слабых грунтах. Устройство термостабилизации многолетнемерзлых грунтов содержит по меньшей мере два термостабилизатора грунта на основе двухфазных термосифонов, включающих надземную конденсаторную часть и подземные транспортную и испарительные части, и по меньшей мере один теплопроводящий элемент, выполненный в виде пластины из теплорассеивающего материала с коэффициентом теплопроводности не менее 5 Вт/м⋅К. По меньшей мере два термостабилизатора грунта установлены по обе стороны от трубопровода подземной прокладки, а по меньшей мере один теплопроводящий элемент установлен под теплоизоляционным материалом, отделяющим трубопровод подземной прокладки от кровли многолетнемерзлых грунтов, и имеет отверстия для соединения с испарительными частями по меньшей мере двух термостабилизаторов грунта. Технический результат состоит в повышении эффективности сохранения многолетнемерзлых грунтов или замораживания слабых грунтов оснований объектов трубопроводной системы для обеспечения безопасности в течение назначенного срока эксплуатации на проектных режимах. 2 н. и 6 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к области строительства и эксплуатации зданий в районах со сложными инженерно-геокриологическими условиями, а именно к термостабилизации многолетнемерзлых и слабых грунтов. Способ установки термостабилизаторов в проветриваемом подполье эксплуатируемых зданий включает бурение, по крайней мере, одной вертикальной скважины в проветриваемом подполье без нарушения перекрытий здания. Установку в скважине термостабилизатора, содержащего заправленную хладагентом трубу испарителя и конденсатор, причем труба выполнена с возможностью изгиба, радиус которого не превышает высоту проветриваемого подполья. Глубина установки термостабилизатора при этом такова, что конденсатор расположен выше уровня грунта в проветриваемом подполье. Технический результат состоит в упрощении процедуры монтажа термостабилизаторов под эксплуатируемым зданием, улучшении ремонтопригодности системы охлаждения грунта и упрощении ее обслуживания, увеличении несущей способности грунтов основания за счет их охлаждения по всей площади проветриваемого подполья эксплуатируемого здания при одновременном уменьшении количества используемых термостабилизаторов и освобождении прилегающей территории за счет размещения охлаждающих элементов в проветриваемом подполье. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области строительства сооружений в сложных инженерно-геологических условиях криолитозоны. Изобретение направлено на создание глубинных термосифонов со сверхглубокими подземными испарителями, порядка 50-100 м и более, с равномерным распределением температуры по поверхности испарителя, расположенного в грунте, что позволяет более эффективно использовать его потенциальную мощность по выносу тепла из грунта и увеличить энергетическую эффективность применяемого устройства. По первому варианту термосифон вместе с гильзой погружают вертикально в грунт на глубину 50 м. Термосифон содержит герметичный трубчатый корпус с зонами испарения, конденсации и транспортной зоной между ними. Конденсатор в зоне конденсации выполнен в виде центральной трубы большого диаметра и восьми патрубков меньшего диаметра с внешним оребрением из алюминия, расположенных вокруг центральной трубы. Патрубки соединены с отверстиями в ней, а в нижней части центральной трубы размещен сепаратор со сквозными патрубками для прохода парокапельной смеси хладагента (аммиака в первом варианте или углекислого газа - во втором) из испарителя в конденсатор и стока конденсата аммиака из конденсатора. Сквозные патрубки смонтированы на трубной доске. К патрубку для стока конденсата, расположенного по центру доски, снизу подсоединена внутренняя полиэтиленовая труба, которая опущена до низа трубы корпуса испарителя. В нижней части полиэтиленовой трубы выполнены отверстия для перетока жидкого хладагента в межкольцевое пространство, образованное стенками труб корпуса испарителя и внутренней трубы. По первому варианту (хладагент - аммиак) термосифон погружен в гильзу, заполненную 25-30%-ной аммиачной водой. Степень заполнения термосифона жидким аммиаком ε=0,47-0,52 при 0°С. По второму варианту термосифон заполняют углекислым газом и погружают вертикально в грунт без гильзы, степень заполнения жидким углекислым газом ε=0,45-0,47. 2 н. и 2 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к области строительства в районах со сложными инженерно-геокриологическими условиями, где применяется термостабилизация многолетнемерзлых и пластично-мерзлых грунтов, и может быть использовано для поддержания их мерзлого состояния или замораживания, в том числе и в скважинах, неустойчивых в стенках и склонных к оползанию и обвалообразованию. Способ включает бурение вертикальной скважины полой шнековой колонной (ПШ) до проектной отметки с последующим извлечением съемного центрального долота, установку на верхнюю часть ПШ цементировочной головки со шлангом от цементонасоса, извлечение ПШ с одновременной подачей цементного раствора через ПШ до заполнения скважины и установку охлаждающего устройства с теплоизоляционным кожухом на конденсаторе (при отрицательных температурах атмосферного воздуха), который демонтируют после твердения цементного раствора. Предлагаемое техническое решение позволяет обеспечить технологичность монтажа охлаждающих устройств, эффективность процесса охлаждения грунтов и долговечность охлаждающих конструкций, заглубленных в грунтовый массив. 2 з.п. ф-лы, 6 ил.

Изобретение относится к системам для охлаждения и замораживания грунтов в горнотехническом строительстве в областях распространения вечной мерзлоты (криолитозоне), характеризующихся наличием природных рассолов с отрицательными температурами (криопэгами). Техническим результатом предлагаемого изобретения является повышение экономичности, надежности и стабильности работы. Технический результат достигается тем, что система для охлаждения и замораживания грунтов, включающая установку подземных теплообменников с жидким теплоносителем с температурой замерзания ниже нуля градусов по Цельсию (рассолом), характеризуется тем, что в качестве жидкого теплоносителя используют криопэги, причем криопэг подается в замораживающие колонки из криолитозоны в теплообменники. Отработанные криопэги могут принудительно отводиться в массив криолитозоны. Наружная часть циркуляционного контура может быть термоизолирована. Технический результат – повышение экономичности достигается отсутствием энергозатратных холодильных машин и за счет отсутствия необходимости в приготовлении специального охлаждающего раствора. Технический результат – повышение надежности достигается снижением количества компонентов системы, вероятность выхода из строя каждого из которых отличается от нулевой. Технический результат – повышение стабильности работы достигается стабильностью температуры криопэга, общее количество которого значительно превышает количество используемого за сезон криопэга. Изобретение может с успехом применяться при строительстве промышленно-гражданских сооружений. 2 з.п. ф-лы, 1 ил.

Предлагаемое устройство относится к строительству одноэтажных зданий на многолетнемерзлых грунтах с искусственным охлаждением грунтов основания здания с помощью теплового насоса и одновременным обогревом здания с помощью теплового насоса и дополнительного источника тепла. Техническим результатом является создание конструкции фундамента, в полной мере обеспечивающей обогрев здания с одновременным сохранением грунтов основания в мёрзлом состоянии вне зависимости от изменения климата и при этом не вызывающей чрезмерного охлаждения многолетнемёрзлых грунтов, которое может привести к их растрескиванию, без устройства подсыпки. Технический результат достигается тем, что поверхностный фундамент для одноэтажного здания на многолетнемерзлых грунтах состоит из совокупности фундаментных модулей полной заводской готовности, которые подключаются к тепловому насосу параллельно с помощью теплоизолированных коллекторов греющего и охлаждающего контуров теплового насоса, при этом теплоизолированный коллектор греющего контура имеет дополнительный источник тепла, компенсирующий недостаток низкопотенциального тепла, перекачиваемого тепловым насосом из грунта для обогрева здания, интенсивность которого автоматически регулируется в зависимости от теплопотерь здания и количества низкопотенциального тепла, перекачиваемого тепловым насосом. 2 з.п. ф-лы, 2 ил.

Изобретения относятся к средствам для охлаждения грунта, работающим по принципу гравитационных тепловых труб и парожидкостных термосифонов, и предназначены для использования при строительстве сооружений в зоне вечной мерзлоты. Техническим результатом является упрощение конструкции установки в целом, позволяющим уменьшить количество выходящих на поверхность трубопроводов, соединяющих зону испарения с зоной конденсации, без снижения эффективности работы этих зон. Технический результат достигается тем, что установка имеет зону испарения с несколькими патрубками и зону конденсации с несколькими конденсаторами, соединенные через транспортную зону. Особенности установки заключаются в выполнении зоны конденсации в виде моноблочной конструкции, имеющей штуцер для стравливания воздуха, и связь ее с зоной испарения через единственный транспортный канал в виде верхнего и нижнего трубопроводов, соединенных через запорный вентиль, а также наличие в зоне испарения коллектора, к которому присоединены патрубки. Оба соединения трубопровода являются разъемными. Трубопровод и патрубки выполнены из легко деформируемого материала, а используемый жидкий теплоноситель имеет пары тяжелее воздуха. Комплект для сооружения установки включает первое изделие - моноблочный конденсатор, второе изделие - верхний транспортный трубопровод и третье изделие в виде последовательно соединенных вентиля, трубопровода и коллектора с патрубками. Третье изделие при изготовлении заполняют теплоносителем, его трубопровод и патрубки сгибают в бухты вокруг коллектора. Конструкция установки и ее комплектация обеспечивают технический результат, заключающийся в более удобной транспортировке и возможности разнесения во времени работ по размещению подземной и надземной частей на месте будущей эксплуатации. Связь этих частей через единственный указанный канал и возможность изгиба его нижней части облегчает размещение установки при наличии в непосредственной близости от нее других строящихся объектов. Установка после соединения ее частей не требует заправки теплоносителем в неблагоприятных условиях строительства и запускается в действие открыванием вентиля с последующим стравливанием воздуха через штуцер. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к строительству в зонах вечной мерзлоты, а именно к термостабилизаторам грунта для замораживания фундаментов. Термостабилизатор грунта содержит герметичный вертикально расположенный корпус с теплоносителем, в верхней и нижних частях которого расположены зоны теплообмена. При этом по меньшей мере в одной зоне теплообмена установлена кольцеобразная вставка, имеющая повышенную удельную поверхность. Наружная поверхность вставки контактирует с внутренней поверхностью корпуса в зоне теплообмена. Площадь поперечного сечения кольцеобразной вставки не превышает 20 площади поперечного сечения полости корпуса. Технический результат состоит в повышении теплопередающих характеристик при сохранении компактности термостабилизатора, а также повышении эффективности работы термостабилизатора грунта. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области строительства в районах со сложными инженерно-геокриологическими условиями, а именно к термостабилизации многолетнемёрзлых и слабых грунтов. Техническим результатом является повышение технологичности процесса монтажа длинномерных термостабилизаторов, уменьшение времени установки, увеличение надёжности конструкции. Технический результат достигается тем, что термостабилизатор грунтов круглогодичного действия для аккумуляции холода в основаниях зданий и сооружений содержит трубу стальную термостабилизатора и трубу алюминиевую конденсатора, при этом конденсатор термостабилизатора выполнен в виде вертикальной трубы, состоящей из корпуса конденсатора, колпачка конденсатора и двух оребренных конденсаторов с внешней стороны, площадь оребрения которых не менее 2,3 м 2 , при этом термостабилизатор имеет элемент для строповки в верхней части в виде монтажной скобы. 1 ил.

Изобретение относиться к области строительства в районах со сложными инженерно-геокриологическими условиями, а именно термостабилизации многолетнемерзлых и слабых грунтов.

Известно, при строительстве капитальных сооружений, дорог, путепроводов, нефтяных скважин, резервуаров и т.д. на вечномерзлых грунтах необходимо применять специальные меры по сохранению температурного режима грунтов в течение всего периода эксплуатации и предотвращения разупрочнения несущих оснований при оттаивании. Наиболее эффективным методом являются расположение в основании сооружения стабилизаторов пластично-мерзлого грунта, обычно содержащих систему труб, заполненных хладагентом и соединенных конденсаторной частью (например: патентная заявка РФ №93045813, №94027968, №2002121575, №2006111380, Патенты РФ №2384672, №2157872.

Обычно установку СПМГ проводят до строительства сооружений: готовят котлован, отсыпают песчаную подушку, монтируют термостабилизаторы, производят отсыпку грунта и устанавливают слой теплоизоляции (Журнал «Основания, фундаменты и механика грунтов, №6, 2007, с. 24-28). После завершения строительства сооружения контроль работы термостабилизатора и ремонт отдельных частей сильно затруднен, что требует дополнительного резервирования (Журнал «Газовая промышленность», №9, 1991, с. 16-17). Для улучшения ремонтопригодности термостабилизаторов предлагается размещать их внутри защитных труб с одним заглушенным торцом, заполненных жидкостью с высокой теплопроводностью (патент РФ №2157872). Защитные трубы располагают под отсыпкой грунта и слоем теплоизоляции с уклоном 0-10° к продольной оси основания. Открытый торец трубы выведен за пределы контура отсыпки грунта. Такая конструкция позволяет в случае нарушения герметичности, деформации или при других дефектах охлаждающих труб извлекать их, производить текущий ремонт и устанавливать обратно. Однако в этом случае значительно увеличивается стоимость изделия за счет использования защитных труб и специальной жидкости.

Для охлаждения грунта в основании сооружений в эксплуатационный период используют тепловые трубы различных конструкций (патент РФ №2327940, патент РФ на полезную модель №68108), устанавливаемые в скважины. Для обеспечения удобства изготовления, транспортировки и монтажа тепловых труб их корпус имеет по крайней мере одну вставку, выполненную в виде сильфона (патент РФ на полезную модель №83831). Вставка обычно снабжена жесткой съемной обоймой для фиксации взаимного положения секций корпуса. Жесткая обойма может иметь перфорацию для заполнения пространства между ней и сильфоном грунтом с целью уменьшения теплового сопротивления. Погружение тепловой трубы в скважину предполагается посекционное, путем статического вдавливания. Это приводит к большим изгибающим нагрузкам на конструкцию, что может привести к ее повреждению.

Близким к настоящему изобретению является способ устранения осадок насыпей на вечной мерзлоте замораживанием оттаивающих грунтов длинномерными термосифонами (ОАО «РЖД», ФГУП ВНИИЖТ, «Технические указания по устранению осадок насыпей на вечной мерзлоте замораживанием оттаивающих грунтов длинномерными термосифонами» М., 2007). Этот способ предусматривает бурение нескольких наклонных скважин навстречу друг другу с противоположных концов сооружения, после чего охлаждающие устройства (термосифоны) погружаются до конечной глубины скважины статической вдавливающей нагрузкой. Как уже отмечалось, при этом возникают значительные разрушающие нагрузки на конструктивные элементы охлаждающего устройства.

Наиболее близким к настоящему изобретению является изобретение №2454506 C2 МПК Е02Д 3/115 (2006.01) «Охлаждающее устройство для температурной стабилизации многолетнемерзлых грунтов и способ монтажа такого устройства». Данное изобретение направлено на повышение технологичности процесса монтажа длинномерных термостабилизаторов, уменьшение времени установки, увеличение надежности конструкции и замены поврежденных участков при этом одновременно уменьшается стоимость монтажа устройства.

Заявленный технический результат достигается тем, что монтаж охлаждающего устройства для температурной стабилизации многолетнемерзлых грунтов включает:

Прохождение сквозной скважины;

Протяжку в направлении, обратном направлению проходки скважины термостабилизатора;

Монтаж конденсаторов.

Термостабилизатор (длинномерный термосифон) содержит заправленные хладагентом трубы конденсатора и испарителя, соединенные сильфонными рукавами (сильфонами). Каждый из рукавов укреплен бандажами. Трубы конденсатора расположены по краям термостабилизатора и протяжку осуществляют до положения, при котором трубы конденсатора будут расположены над поверхностью грунта.

Конденсаторы (теплообменники) включают в себя трубы конденсатора с установленными на них охлаждающими элементами (ребордами, дисками, ребрами и т.п.или радиаторами иной конструкции). Обычно монтаж теплообменника осуществляют путем напрессовки дисковых реборд на трубу конденсатора. Такой способ является наиболее удобным в таких климатических условиях. В случае необходимости могут быть использованы сварка и монтаж посредством болтовых соединений. В рамках настоящего изобретения можно применять также конденсаторы другой конструкции. То, что окончательный монтаж конденсатора осуществляют после протягивания термостабилизатора через скважину, позволяет использовать скважины меньшего диаметра и не требует больших материальных и трудозатрат.

Установка конденсаторов с обеих сторон термостабилизатора позволяет повысить эффективность работы устройства. А способ установки позволяет использовать термостабилизаторы значительно большей длины и, как следствие, значительно увеличить зону охлаждения. Один из конденсаторов может быть смонтирован еще на заводе-изготовителе, что упрощает процедуру монтажа в трудных климатических условиях. (Поскольку вместо обычной процедуры вдавливания термостабилизатора в соответствии с настоящим изобретением используют протягивание, уменьшается опасность повредить конденсатор при установке термостабилизатора).

Таким образом, данное изобретение улучшает технологичность процесса монтажа длинномерных термостабилизаторов за счет изменения направления установки термостабилизатора; уменьшает время установки устройства за счет снижения количества операций и возможности вести работы с одной стороны сооружения; увеличивает надежность и безопасность монтажа; упрощает процедуру замены поврежденных участков. Благодаря низкой стоимости монтажных работ и возможности их проведения уже в процессе эксплуатации объекта, более рентабельным является замена вышедших из строя термостабилизаторов путем прокладки дополнительных линий, чем их демонтаж и ремонт.

Недостатком известного технического решения является сложное конструкционное решение и в следствие этого узкая область применения в связи с ограниченными по глубине заложения сваи и при глубоком замораживании грунта в других случаях, а также низкий коэффициент полезного действия вследствие горизонтальной системы охлаждения принудительного действия.

Задачей настоящего изобретения является создание рационального, надежного термостабилизатора грунтов, отвечающего высоким технологическим и конструктивным требованиям сохранения температурного режима грунтов в течение всего периода эксплуатации, благодаря соответствию термостабилизатора архитектурным особенностям сооружения.

Термостабилизаторы поставляются на место проведения монтажа полностью собранными, не требующими сборки на месте эксплуатации. При этом термостабилизатор изготовлен в исполнении для сейсмических районов (до 9 баллов по шкале MSK-64) с сроком службы и сроком службы антикоррозионного покрытия 50 лет. Термостабилизатор имеет антикоррозионное покрытие (цинковое), выполненное в заводских условиях.

Термостабилизатор погружается непосредственно после бурения скважины. Зазор между термостабилизатором и стенкой скважины заполняется грунтовым раствором влажностью 0,5 и выше. Используется грунт выбуренный при проходке скважины или глинисто-песчаная смесь.

Уровень низа термостабилизатора и уровень низа скважины определяются при монтаже термостабилизатора.

Сущность изобретения поясняется рис. 1.

Термостабилизатор состоит из: конденсатора термостабилизатора 1, корпуса конденсатора 2, колпачка конденсатора 3, трубы стальной термостабилизатора 4, трубы алюминиевой конденсатора 5, скобы монтажной термостабилизатора 6, корпуса термостабилизатора 7, наконечника термостабилизатора 8, вставки теплоизолирующей термостабилизатора 9.

Конденсатор термостабилизатора 1 выполнен в виде вертикальной трубы - корпуса конденсатора 2, состоящей из колпачка конденсатора 3 и двух оребренных конденсаторов с внешней стороны, оребрение накатывают, установив трубу алюминиевую конденсатора 5 вплотную к сварному шву.

Оребрение высокоэффективное, винтовое направление витков произвольное. На поверхности оребрения допускается деформирование на витках не более 10 мм, покрытие поверхности трубы алюминиевой после накатки - химическое пассивирование в растворе щелочи и соли. Площадь оребрения - не менее 2,43 м 2 .

Эффективное охлаждения термостабилизатора достигается за счет большой площади поверхности оребрения.

Корпус термостабилизатора допускается изготавливать из двух-трех частей, сваренных на установке автоматической сварки стальных труб МД (шов нестандартный, сварка производиться вращающейся магнитоуправляемой дугой).

Сварной шов испытывается на прочность и герметичность воздухом при избыточном давлении 6,0 МПа (60 кгс/см 2) под водой.

Оребрение конденсатора накатывать, установив трубу алюминиевую конусом вплотную к сварному шву.

На поверхности оребрения допускается деформация на витках глубиной не более 10 мм - линейная, продольная и радиальная - винтовая, а также до семи витков с каждого торца менее диаметра 67. Покрытие поверхности трубы алюминиевой после накатки - химическое пассивирование в растворе щелочи и соли. Площадь оребрения не менее 2,3 м 2 .

Термостабилизатор имеет элемент для строповки в верхней части в виде монтажной скобы. Строповка осуществляется с помощью текстильной стропы в виде петли, грузоподъемностью 0,5 т.

Термостабилизаторы имеют наружное антикоррозионное цинковое покрытие, выполненное в заводских условиях.

Климатические условия проведения монтажа термостабилизаторов:

Температура не ниже минус 40°C;

Относительная влажность воздуха от 25 до 75%;

Атмосферное давление 84,0-106,7 кПа (630-800 мм рт.ст.).

Место для проведения монтажа термостабилизаторов должно отвечать следующим условиям:

Иметь достаточную освещенность, не менее 200 лк;

Должно быть оборудовано грузоподъемными механизмами.

Зазор между термостабилизатором и стенкой скважины заполняется грунтовым раствором влажностью 0,5 и выше. Используется грунт, выбуренный при проходке скважины, или глинисто-песчаная смесь.

Теплоизоляция термостабилизатора 9 производят в зоне сезонного протаивания.

Сталь для стальных труб термостабилизатора является адаптированной к условиям севера и имеет антикоррозионное цинковое покрытие. Термостабилизатор имеет малый вес благодаря небольшому диаметру, при этом сохраняется широкий радиус промерзания грунта.

Термостабилизаторы поставляются на место проведения монтажа полностью собранными, не требующими сборки на месте эксплуатации. При этом термостабилизатор изготовлен в исполнении для сейсмических районов (до 9 баллов по шкале MSK-64) со сроком службы антикоррозионного покрытия 50 лет. Термостабилизатор имеет антикоррозионное покрытие (цинковое), выполненное в заводских условиях.

Термостабилизатор грунтов круглогодичного действия для аккумуляции холода в основаниях зданий и сооружений, содержащий трубу стальную термостабилизатора и трубу алюминиевую конденсатора, отличающийся тем, что конденсатор термостабилизатора выполнен в виде вертикальной трубы, состоящей из корпуса конденсатора, колпачка конденсатора и двух оребренных конденсаторов с внешней стороны, площадь оребрения которых не менее 2,3 м 2 , при этом термостабилизатор имеет элемент для строповки в верхней части в виде монтажной скобы.

Похожие патенты:

Предлагаемое устройство относится к строительству одноэтажных зданий на многолетнемерзлых грунтах с искусственным охлаждением грунтов основания здания с помощью теплового насоса и одновременным обогревом здания с помощью теплового насоса и дополнительного источника тепла.

Изобретение относится к системам для охлаждения и замораживания грунтов в горнотехническом строительстве в областях распространения вечной мерзлоты (криолитозоне), характеризующихся наличием природных рассолов с отрицательными температурами (криопэгами).

Изобретение относится к области строительства в районах со сложными инженерно-геокриологическими условиями, где применяется термостабилизация многолетнемерзлых и пластично-мерзлых грунтов, и может быть использовано для поддержания их мерзлого состояния или замораживания, в том числе и в скважинах, неустойчивых в стенках и склонных к оползанию и обвалообразованию.

Изобретение относится к области строительства сооружений в сложных инженерно-геологических условиях криолитозоны. Изобретение направлено на создание глубинных термосифонов со сверхглубокими подземными испарителями, порядка 50-100 м и более, с равномерным распределением температуры по поверхности испарителя, расположенного в грунте, что позволяет более эффективно использовать его потенциальную мощность по выносу тепла из грунта и увеличить энергетическую эффективность применяемого устройства.

Изобретение относится к области строительства, а именно к возведению производственных или жилых комплексов на вечной мерзлоте. Техническим результатом является обеспечение стабильной низкой температуры мерзлоты в грунтах оснований строительного комплекса при наличии насыпного планировочного слоя грунта. Технический результат достигается тем, что площадка под строительный комплекс на вечной мерзлоте содержит насыпной планировочный слой грунта, расположенный на естественной поверхности грунта в пределах строительного комплекса, при этом насыпной планировочный слой грунта содержит охлаждающий ярус, расположенный непосредственно на естественной поверхности грунта, и расположенный на охлаждающем ярусе защитный ярус, при этом охлаждающий ярус содержит охлаждающую систему в виде пустотелых горизонтальных труб, расположенных параллельно верхней поверхности площадки, и вертикальных пустотелых труб, низ которых примыкает сверху к горизонтальным трубам и полость которых соединена с полостью горизонтальных труб, при этом их верхний торец имеет заглушку, вертикальная труба пересекает защитный ярус и граничит с наружным воздухом, а защитный ярус содержит слой теплоизоляционного материала, расположенный непосредственно на охлаждающем ярусе и защищенный сверху слоем грунта. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области строительства в районах со сложными инженерно-геокриологическими условиями, а именно к термостабилизации многолетнемёрзлых и слабых грунтов. Техническим результатом является повышение технологичности процесса монтажа длинномерных термостабилизаторов, уменьшение времени установки, увеличение надёжности конструкции. Технический результат достигается тем, что термостабилизатор грунтов круглогодичного действия для аккумуляции холода в основаниях зданий и сооружений содержит трубу стальную термостабилизатора и трубу алюминиевую конденсатора, при этом конденсатор термостабилизатора выполнен в виде вертикальной трубы, состоящей из корпуса конденсатора, колпачка конденсатора и двух оребренных конденсаторов с внешней стороны, площадь оребрения которых не менее 2,3 м2, при этом термостабилизатор имеет элемент для строповки в верхней части в виде монтажной скобы. 1 ил.

Для работы в условиях Ямала предусматривается использование специальных материалов для укрепления грунтовых поверхностей - биоматов. Это полноценный искусственный заменитель почвы на период ее восстановления.

Биомат представляет собой многослойную полностью биологически разлагающуюся основу, между слоями которой уложена рекультивационная смесь, включающая семена многолетних растений, питательные вещества (минеральные и органические удобрения, стимуляторы роста растений, почвообразующие бактерии) и влагоудерживающие компоненты (в виде синтетических полимеров), которые улучшают способность почвы к удержанию влаги.

Использование биоматов направлено на защиту и укрепление поверхностей грунтовых насыпей и откосов, грунтовых обваловок трубопроводов. Применение биомата особенно эффективно в сложных природных условиях в районах Крайнего Севера, где природная среда особенно чувствительна к внешним воздействиям, и происходящее полное или частичное уничтожение растительного покрова крайне резко активизирует процессы водной и ветровой эрозии, оврагообразования.

Применение биоматов позволяет практически восстанавливать почвенно-растительный слой уже в течение первого летнего сезона без укладки плодородного слоя почв и последующего досева трав.

Они изготавливаются в промышленных условиях и доставляются на объект в полностью готовом виде. Строителям останется лишь закрепить их с помощью специальных стержней на месте завершившихся работ.

Термостабилизаторы грунта.

Одним из важнейших направлений, отражающих современную практику северного строительства, является сохранение традиционного состояния многолетнемерзлых грунтов в зоне хозяйствования человека. При этом условии сохраняется равновесное состояние окружающей среды и устойчивость сооружений, возводимых на этих грунтах.

Эффективным способом поддержания или усиления мерзлого состояния грунта в основаниях сооружений является использование низких температур наружного воздуха с помощью парожидкостных термосифонов, называемых термостабилизаторами.

Термостабилизаторы предназначены для охлаждения и замораживания многолетнемерзлого грунта с целью повышения его несущей способности.

Область конкретного использования термостабилизаторов грунтов весьма широка: стабилизация грунта в основаниях фундаментов и сооружений, опор мостов, трубопроводов, линий электропередач.

Конструкция термостабилизатора грунтов представляет собой гравитационно-ориентированную тепловую трубу, в которой осуществляется испарительно-конденсационный процесс передачи тепла с помощью паров легкокипящего хладагента (хладона, пропана, аммиака и т.д.). Оребренная надземная часть представляет собой конденсатор, заглубленная в грунт часть термостабилизатора является испарителем.

Термостабилизатор для грунта содержит внутри герметичного корпуса конструктивные элементы, обеспечивающие его устойчивую работу как в вертикальном, так и в наклонном положениях.

Профиль (рейка) футеровочный полимерный.

Профиль футеровочный полимерный предназначен для защиты наружной поверхности трубопровода при установке чугунных или железобетонных пригрузов (утяжелителей), а также для защиты от механических повреждений изоляционного покрытия трубопроводов в процессе протаскивания трубопровода через футляр подводного перехода в сложной местности. Профили «Нефтегаз» могут также применяться в качестве футеровочных матов под опорными элементами и трубопроводной арматурой.

Применение профилей в значительной мере сокращает время футерования, обеспечивает гарантированную сохранность изоляционного покрытия трубопровода и продлевает срок эксплуатации подводного перехода. Материалы профилей не подвержены гниению, пригодны для использования в агрессивных средах, экологически безопасны, не причиняют вреда окружающей среде и могут применяться в водоёмах с пресной питьевой водой.

Георешётка.

Георешётка позволяет оптимальным образом произвести стабилизацию нагрузки и сопротивление эрозии почвы, что обеспечивает стабильное положение грунта.

Георешётка используется при строительстве газопроводов для укрепления прибрежной береговой линии.

Искусственно созданные насыпи, возникающие при строительстве или работе на строительных участках, невозможно себе представить без применения надлежащей фиксации. Стойкость откосов в данном случае может быть повышена при помощи георешётки, которая позволит увеличить темпы строительства объектов.

Наполнитель георешётки, состоящий из специальной прослойки, проходящей между георешёткой и грунтом, играет важную роль в надёжности создаваемой конструкции.

Георешётка сдерживает энергию потоков воды, предотвращает эрозию, уменьшает сдвигающие силы направленные вдоль склона в контактной зоне с заполнителем.

Скальный лист полимерный для защиты изолированной поверхности трубопроводов.

Скальный лист предназначен для защиты изолированной поверхности трубопроводов диаметром до 1420 мм, включительно, при их подземной прокладке в скальных и вечномерзлых грунтах с острыми фракциями, а также в минеральных грунтах с включениями дресвы, гальки, отдельных каменных глыб.

Скальный лист состоит из нетканого синтетического материала со специальным пластичным и в то же время твердым покрытием. СЛП - абсолютно новое экологически чистое покрытие, предназначенное для защиты изолированной поверхности трубопровода любого диаметра. СЛП могут использоваться в любых климатических условиях.

Конструкция скального листа удовлетворяет таким основным требованиям, как:

  1. Обеспечение экологической чистоты окружающей среды;
  2. Упрощение процесса футеровки трубопровода (процесса монтажа);
  3. Упрощение процесса транспортировки и хранения;
  4. Не препятствует катодной защите.

Полимерконтейнерное балластирующее устройство-модернизированная конструкция сдвоенная ПКБУ-МКС.

Полимерно-контейнерное балластирующее устройство-модернизированная конструкция сдвоенная ПКБУ-МКС является изделием, которое состоит из двух контейнеров, соединенных четырьмя силовыми лентами, а также металлических распорных рамок. Такие контейнеры изготавливают из мягких синтетических материалов. Для производства балластирующих устройств используют технические ткани, которые отличаются высокой прочностью и обеспечивают длительность эксплуатации в грунтовых условиях. Их можно применять для балластировки трубопроводов, диаметр которых составляет до 1420 мм, а также тех сооружений, которые плавают в обводненной траншее или эксплуатируются в болотистой местности при таком условии, что глубина траншеи превышает мощность залежей торфа.

Основной особенностью ПКБУ-МКС является отсутствие контакта металлической рамки с изоляционным покрытием трубопровода. ПКБУ-МКС включает в себя контейнерную часть КЧ, представленную одним мешком, а также четырех продольных и четырех поперечных труб - элементов распорных рамок жесткости ЭРРЖ. В случае необходимости балластирующие устройства могут быть объединены в группы посредством соединительных муфт. При диаметре трубопроводов от 1420 до 1620 мм группа может состоять из четырех устройств, а при диаметре 720–1220 мм - из двух.

Термостабилизация грунтов

Последние десятилетия отмечается рост температуры вечномерзлых грунтов. Это вызывает риски возникновения запроектных напряженно-деформированных состояний грунтов оснований, фундаментов, зданий и сооружений, возводимых на таких грунтах.

Эта серьезная проблема с каждым годом затрагивает все большее число объектов, эксплуатируемых на основаниях, сложенных вечномерзлыми грунтами (происходят неравномерные осадки, просадки фундаментов, разрушение элементов конструкций и т.д.).

Возведение зданий и сооружений на вечномерзлых грунтах ведется по двум принципам:

Первый принцип основывается на сохранении вечномерзлого состояния грунтов на период всей эксплуатации здания или сооружения;

Второй принцип подразумевает использование грунтов в качестве оснований в оттаянном или оттаивающем состоянии (производится предварительное оттаивание на расчетную глубину до начала строительства или допускается оттаивание в период эксплуатации;

Выбор принципа зависит от инженерно-геокриологической обстановки. Необходимо учесть и сравнить целесообразность принципов. Первый принцип подразумевает, что выгоднее поддерживать грунты в мерзлом состоянии, чем усилять оттаявшие грунты.

Второй принцип больше подходит, когда оттаивание грунтов приводит к деформациям грунтов оснований, которые находятся в области допустимых значений для конкретного здания или сооружения. Этот принцип, например, подходит для скальных и твердомерзлых грунтов, деформации которых невелики в оттаянном состоянии.

Термостабилизация грунтов

Термостабилизация мерзлых грунтов призвана обеспечить возможность возведения зданий и сооружений по второму принципу.

Для поддержания грунтов в мерзлом состоянии применяется ряд мер. Одним из эффективных и экономически целесообразных методов является понижение температуры грунтов с помощью термостабилизаторов .

Термостабилизатор грунтов (ТСГ) представляет из себя парожидкостный сифон. Это заправленное хладагентом сезоннодействующее охлаждающее устройство для понижения температуры грунтов.

ТСГ погружают в пробуренные скважины рядом с фундаментом для понижения температуры массива грунта, являющуюся основанием фундамента. Часть устройства представляет из себя испаритель, забирающий тепло из грунтов, и конденсатор, отдающий тепло в окружающую атмосферу.

В термостабилизаторе происходит естественная конвекционная циркуляция хладагента, который переходит из одного агрегатного состояния в другое: из газа в жидкость и обратно.

Сконденсировавшийся хладагент (сжиженный аммиак или диоксид углерода) естественным образом под действием разности температур опускается в нижнюю часть ТСГ к грунтам. После, забрав от них тепло, превращается в пар и, испаряясь, возвращается на поверхность, где снова передает тепло окружающему воздуху через стенки радиатора-конденсатора, конденсируется. После цикл повторяется снова.

Циркуляция хладагента может быть ествественной конвекционно-гравитационной или принудительной. Это зависит от конструкции термостабилизатора.

Тип, конструкция и количество термостабилизаторов подбираются на основе индивидуальных расчетов для каждого объекта.

Термостабилизаторы показали свою эффективность, - с их помощью удается поддерживать грунты в вечномерзлом состоянии и обеспечивать прочность и неизменность льдогрунтовой плиты под сооружением.

Конвекционная циркуляция хладагента основывается на градиенте температур грунтов и наружного воздуха.

Во время летнего периода, как

только температура конденсатора - верхней, находящейся в атмосфере части термостабилизатора,

становится выше температуры теплоносителя,

циркуляция прекращается и процесс приостанавливается с частичным инерционным оттаиванием верхнего слоя грунта до следующего похолодания.

Схемы установок по способу монтажа и конструкции:

Одиночный скважинный термостабилизатор (ОСТ)

Наиболее простое устройство, позволяющее проводить монтажные работы как для строящихся, так и для существующих зданий и сооружений. ОСТ допускается устанавливать как вертикально, так и под углом наклона 45 градусов к поверхности;

Горизонтальная система термостабилизаторов (ГСТ) представляет из себя систему труб-испарителей, расположенных в одной горизонтальной плоскости в массиве грунта, являющегося основанием фундамента. Хладагент из труб испарителя переносится к конденсатору, расположенному на поверхности. Устройство ГСТ целесообразно при новом строительстве, когда возможно устройство котлована;

Вертикальная система термостабилизаторов (ВСТ) сочетает в себе горизонтальную систему, к трубам-испарителям, которой присоединены вертикальные трубы-испарители, уходящие вглубь массива грунта. Эта конструкция позволяет замораживать грунты на большую глубину, чем по схеме ГСТ. Устройство ВСТ целесообразно при новом строительстве, когда возможно устройство котлована;

Система термостабилизаторов, устанавливаемых в основание существующего здания или сооружения с помощью наклонно-направленного бурения.

Последний метод не требует разработки котлованов, траншей, укрепления, позволяет сохранить естественную структуру грунтов. Допустимо устройство системы термостабилизации грунтов параллельно со строительством самого здания или сооружения, что ускоряет процесс строительства.

Технико-экономические показатели при применении термостабилизации грунтов

Термостабилизация грунтов с помощью различных систем ТСГ позволяет снизить стоимость строительства до 50% и сократить срок строительства объектов почти в 2 раза.

"Термостабилизация грунтов" (скачать в PDF формате)

Все права защищены, 2014-2030.

Копирование информации с данного сайта допускается только со ссылкой на http://сайт

Предложения, размещенные на данном интернет-сайте, не являются публичной офертой.



 
Статьи по теме:
Рыба на решетке - самое вкусное и ароматное блюдо
Особенность приготовления рыбы на мангале состоит в том, что независимо от того, как вы будете жарить рыбу — целиком или кусочками, кожу снимать не следует. Тушку рыбы нужно разделать очень аккуратно — старайтесь разрезать ее таким образом, что голова и х
Ю.Андреев - Живой журнал! Андреев Ю.А. Юрий Андреев: биография
Андреев Ю.А. - об авторе Юрий Андреевич родился в Днепропетровске. В 1938 году семья переехала из Днепропетровска в Смоленск, где встретила войну (отец - кадровый военный). В 1944 семья переехала в Ленинград по месту службы отца. Окончил школу с золотой
Мастер-класс для педагогов на тему «Создание электронных тестов» методическая разработка по технологии на тему
1C:Электронное обучение 1С:Электронное обучение. Экзаменатор Разработка электронных тестов Позволяет разрабатывать собственные электронные тесты и импортировать тесты других разработчиков. Также могут быть импортированы и другие учебные материалы: файлы,
Старец Павел (Груздев) Старец архимандрит павел груздев
Архимандрит Павел (в миру Павел Александрович Груздев) родился 10 января 1910 года в деревне Барок Мологского уезда Ярославской губернии.Когда его отца Александра Александровича Груздева призвали во время войны 1914 года в армию, маленького шестилетнего П