Когда горит вода. Катализ и сжигание воды. Где больше всего пресной воды

1 июля 1974 года - 24 марта 1976 года Предшественник: Хуан Перон Преемник: Хорхе Рафаэль Видела Вероисповедание: Рождение: 4 февраля (1931-02-04 ) (88 лет)
Ла-Риоха , Аргентина Смерть: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).
Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Место погребения: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Династия: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Имя при рождении: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Отец: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Мать: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Супруг: Хуан Перон Дети: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Партия: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Образование: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Учёная степень: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Сайт: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Автограф: Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Монограмма : Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value). Награды:

Ошибка Lua в Модуль:Wikidata на строке 170: attempt to index field "wikibase" (a nil value).

Ошибка Lua в Модуль:CategoryForProfession на строке 52: attempt to index field "wikibase" (a nil value).

Мари́я Эсте́ла Марти́нес де Перо́н , известна как Исабель (исп. María Estela Martínez de Perón ; 4 февраля , Ла-Риоха , Аргентина) - первая женщина-президент Аргентины в -1976 годах , и третья супруга Хуана Перона , президента Аргентины . Первая в мире женщина-президент (но не первая глава государства).

Первая леди

Мария Эстела Мартинес де Перон родилась 4 февраля 1931 года в Ла-Риохе на северо-западе Аргентины в семье банковских служащих. В 1938 году её семья переехала в Буэнос-Айрес, где Мария Эстела получила образование в Институте культуры, став преподавателем французского языка и музыки. Позже она стала выступать на сцене в составе балетной труппы Национального театра имени Сервантеса. Под принятым тогда сценическим псевдонимом «Исабель» она через годы пришла в политику . Согласно официальной версии в 1955 году она познакомилась с будущим мужем генералом Хуаном Доминго Пероном и стала его секретарём . В это время свергнутый лидер жил в эмиграции в Панаме , где Исабель работала танцовщицей в ночном клубе. Вместе с Пероном переехала в Испанию в 1960 году . Под давлением церкви Перон был вынужден жениться на ней в 1961 году (хотя Исабель была моложе его на 35 лет).

Когда Перон решил вернуться в политику, Исабель нередко ездила по его поручениям в различные страны Южной Америки и в Испанию, активно участвовала в перонистском движении и координации действий перонистских организаций . В это время с ней познакомился философ-мистик Хосе Лопес Рега , который вплоть до её отстранения от власти оказывал на неё большое влияние. Под давлением своей супруги Перон назначил Лопеса своим личным секретарём, позднее тот стал министром. Впоследствии Хосе Лопес Рега стал лидером аргентинских «эскадронов смерти » - праворадикального «Аргентинского антикоммунистического альянса ».

В отличие от прежней супруги Перона, Евы (Эвиты) Перон , которую она напоминала внешне, Исабель была достаточно слабовольной и не играла активной роли в политике.

Президент

Напишите отзыв о статье "Мартинес де Перон, Исабель"

Примечания

Литература

  • Мария Эстела Мартинес де Перон (Люди и события) // Новое время . - М ., 1974. - № 28 . - С. 13 .
  • Мартинес де Перон, Мария Эстела (биографические справки) // Ежегодник Большой советской энциклопедии . - М .: Советская энциклопедия, 1975. - Вып. 1975 . - С. 644 .

Ссылки

Ошибка Lua в Модуль:External_links на строке 245: attempt to index field "wikibase" (a nil value).

Отрывок, характеризующий Мартинес де Перон, Исабель

– Кардиналы тоже люди, мадонна, и они умеют отличать прекрасное от простоты... А где же ваша чудесная дочь? Смогу ли я насладиться сегодня двойной красотой?
– Её нет в Венеции, ваше преосвященство. Она с отцом уехала во Флоренцию, навестить её больного кузена.
– Насколько я знаю, в данный момент в вашей семье нет больных. Кто же так внезапно заболел, мадонна Изидора? – в его голосе звучала неприкрытая угроза...
Караффа начал играть открыто. И мне не оставалось ничего, как только встречать опасность лицом к лицу...
– Что вы от меня хотите, Ваше преосвященство? Не проще ли было бы сказать это прямо, избавив нас обоих от этой ненужной, дешёвой игры? Мы достаточно умные люди, чтобы, даже при разности взглядов, могли уважать друг друга.
У меня от ужаса подкашивались ноги, но Караффа этого почему-то не замечал. Он впился в моё лицо пылающим взглядом, не отвечая и не замечая ничего вокруг. Я не могла понять, что происходит, и вся эта опасная комедия всё больше и больше меня пугала... Но тут произошло кое-что совершенно непредвиденное, что-то полностью выходящее за привычные рамки... Караффа подошёл ко мне очень близко, всё так же, не сводя горящих глаз, и почти не дыша, прошептал:
– Ты не можешь быть от Бога... Ты слишком красива! Ты колдунья!!! Женщина не имеет права быть столь прекрасной! Ты от Дьявола!..
И повернувшись, бросился без оглядки из дома, как будто за ним гнался сам Сатана... Я стояла в совершенном шоке, всё ещё ожидая услышать его шаги, но ничего не происходило. Понемногу приходя в себя, и наконец-то сумев расслабить своё одеревеневшее тело, я глубоко вздохнула и... потеряла сознание. Очнулась я на кровати, поимая горячим вином из рук моей милой служанки Кеи. Но тут же, вспомнив о случившемся, вскочила на ноги и начала метаться по комнате, никак не соображая, что же такое предпринять... Время шло, и надо было что-то делать, что-то придумать, чтобы как-то защитить себя и свою семью от этого двуногого чудища. Я точно знала, что теперь всякая игра была кончена, что началась война. Но наши силы, к моему великому сожалению, были очень и очень не равны... Естественно, я могла победить бы его по-своему... могла даже просто остановить его кровожадное сердце. И все эти ужасы сразу бы закончились. Но дело в том, что, даже в свои тридцать шесть лет, я всё ещё оставалась слишком чистой и доброй для убийства... Я никогда не отнимала жизнь, наоборот – очень часто возвращала её. И даже такого страшного человека, каким был Караффа, пока ещё не могла казнить...
На следующее утро раздался сильнейший стук в дверь. Моё сердце остановилось. Я знала – это была инквизиция... Они забрали меня, обвиняя в «словоблудии и чернокнижии, одурманивании честных граждан ложными предсказаниями и ереси»... Это был конец.
Комната, в которую меня поселили, была очень сырой и тёмной, но мне почему-то казалось, что долго я в ней не задержусь. В полдень пришёл Караффа...
– О, прошу прощения, мадонна Изидора, Вам предоставили чужую комнату. Это не для Вас, конечно же.
– К чему вся эта игра, монсеньор? – гордо (как мне казалось) вскинув голову, спросила я. – Я предпочитала бы просто правду, и желала бы знать, в чём по-настоящему меня обвиняют. Моя семья, как вы знаете, очень уважаема и любима в Венеции, и было бы лучше для Вас, если бы обвинения имели под собой истинную почву.
Караффа никогда не узнал, сколько сил мне стоило тогда выглядеть гордой!.. Я прекрасно понимала, что вряд ли кто-нибудь или что-нибудь может мне помочь. Но я не могла допустить, чтобы он увидел мой страх. И поэтому продолжала, пытаясь вывести его из того спокойно-ироничного со-стояния, которое видимо было его своеобразной защитой. И которого совершенно не выносила я.
– Вы соблаговолите мне сообщить, в чём моя вина, или оставите это удовольствие своим верным «вассалам»?!.
– Я не советую Вам кипятиться, мадонна Изидора, – спокойно произнёс Караффа. – Насколько мне известно, вся ваша любимая Венеция знает, что вы – Ведьма. И к тому же, самая сильная, которая когда-то жила. Да Вы ведь этого и не скрывали, не правда ли?
Вдруг я совершенно успокоилась. Да, это было правдой – я никогда не скрывала своих способностей... Я ими гордилась, как и моя мать. Так неужели же теперь, перед этим сумасшедшим фанатиком я предам свою душу и от-кажусь от того, кто я есть?!.
– Вы правы, ваше преосвященство, я Ведьма. Но я не от Дьявола, ни от Бога. Я свободна в своей душе, я – ВЕДАЮ... И Вы никогда не сможете этого у меня отнять. Вы можете только убить меня. Но даже тогда я останусь тем, кем я есть... Только, в том случае, Вы уже никогда меня не увидите...
Я вслепую нанесла слабенький удар... Не было никакой уверенности, что он сработает. Но Караффа вдруг побледнел, и я поняла, что была права. Как бы ни ненавидел женскую половину этот непредсказуемый человек, ко мне у него теплилось странное и опасное чувство, которого я пока ещё не могла точно определить. Но главное – оно было! И только это пока что являлось важным. А разобраться в нём можно было и позже, если сейчас удастся Караффу «поймать» на эту простую женскую приманку... Но я не знала тогда, насколько сильна была воля этого необычного человека... Замешательство исчезло также быстро, как и пришло. Передо мной опять стоял холодный и спокойный кардинал.
– Это было бы огромной потерей для всех, кто ценит красоту, мадонна. Но слишком большая красота бывает опасной, так как она губит чистые души. А уж Ваша-то – точно не оставит никого равнодушным, поэтому будет лучше, если она просто перестанет существовать...
Караффа ушёл. А у меня встали дыбом волосы – настолько сильный он вселял ужас в мою уставшую одинокую душу... Я была одна. Все мои любимые и родные находились где-то по ту сторону этих каменных стен, и я отнюдь не была уверена, что увижу их когда-либо ещё... Моя горячо любимая малышка Анна ютилась во Флоренции у Медичи, и я очень надеялась, что Караффа не знал, где и у кого она находится. Мой муж, который меня обожал, по моей просьбе был с ней и не знал о том, что меня схватили. У меня не было никакой надежды. Я была по-настоящему совсем одна.

Вода самодостаточна для горения: ей не нужны топливо и окислитель.

Согласно современным представлениям о естественной энергетике /1, 2, 3/ горение – это процесс электродинамического взаимодействия свободных электронов – генераторов энергии с положительно заряженными ионами. С поверхности ионов электрон послойно отбирает мелкие положительно заряженные частицы электрино, которые отдают свою кинетическую энергию окружающей среде – плазме, нагревая ее. Для горения необходимы два обязательных условия: наличие свободных электронов и плазмы как состояния раздробленного вещества на атомы и фрагменты, имеющие положительный заряд.

При обычном горении электрон, как главный участник, имеющий наибольший отрицательный заряд, выстраивает вокруг себя сферу из положительно заряженных ионов (атомов) кислорода и взаимодействует с ними. Источником электронов является обычно углеводородное топливо, представляющее собой цепочки электронов, связывающих атомы углерода и водорода. Потеря атомом кислорода нескольких электрино, например, 286 штук, при горении метана, является атомным распадом и образует вполне понятный дефект массы атома кислорода. Этот дефект массы обычно ничтожно мал (порядка 10 -6 %) и восполняется в природных условиях. При этом кислород сохраняет свои химические свойства и после (подчеркиваю: «после») процесса энерговыделения соединяется с атомами участников в устойчивые соединения – окислы, в том числе, в углекислый газ СО 2 . То есть окисление является следствием горения.

Вода, как и углеводородное топливо, представляет собой цепочки электронов, соединяющие молекулы воды в так называемый монокристалл или – большую молекулу, содержащую 3761 единичных молекул воды Н 2 О. Но в отличие от углеводородного топлива, требующего окислителя, кислород содержится в самой воде. Вода вообще идеальный объект для горения, так как она содержит не только положительно заряженные атомы кислорода, но также и положительно заряженные атомы водорода, и положительно заряженные сами молекулы воды Н 2 О и их цепочки. Причем молекула воды поляризована, то есть положительный заряд сконцентрирован на одном полюсе, что способствует возможности взаимодействия свободного электрона с молекулой воды или фрагментом цепочки даже без их разрушения на атомы (но с разрушением цепочки). Таким образом, вода содержит в себе необходимые для горения и электроны, и положительно заряженные атомы и их совокупности.



Что касается свободных электронов, то, например, при нагревании происходит разрушение воды на более мелкие цепочки. Часть из них имеет отрицательный заряд. При этом фрагмент цепочки из единичной молекулы воды с электроном связи почти нейтрален (вода – диэлектрик), а избыточный электрон на «хвосте» отрицательной цепочки в связи с этим еле держится и способен стать свободным при малом разрушительном воздействии – катализе: нагревании, обработке катализатором, резком спаде давления и т.п.

Катализ – разрушение по-гречески. Действие катализаторов, в том числе, известных металлов таблицы Менделеева в основе своей имеет два механизма: магнитный и вихревой. Магнитный, известный как омагничивание воды, заключается в нейтрализации и ослаблении межмолекулярных и межатомных связей. Второй способ – вихревой – тоже аналогичного действия. Дело в том, что вокруг атомов кристаллической решетки металлов по орбите вращается вихрь электрино со скоростью порядка 10 21 м/с. Этой скорости достаточно, чтобы разрушить молекулы, например, воды или нейтрализовать и ослабить межмолекулярные (в монокристалле) и межатомные (в молекуле) связи до такой степени, что указанные объекты будут разрушаться, скажем, в горелке – реакторе при незначительном внешнем воздействии. А далее – возникает горение воды как процесс взаимодействия свободных электронов с положительными ионами среды.

Такие экспериментальные работы проводил, например, Козлов В.Г. в конце 90-х гг. ХХ века /27/. Так называемую легкую воду получали последовательными операциями, например, сначала – как «живую» воду (щелочную, отрицательно заряженную) при электролизе через полупроницаемую мембрану, скапливающуюся на положительном электроде (катоде). Затем эту воду, разлитую тонким слоем, подвергали ультрафиолетовому излучению (катализ) и, далее, банку с водой помещали в три стеклянных сосуда с обычной водой (один в другом) для экранирования от внешних воздействий, в том числе, от действия геомагнитного поля. В сосуде вода выдерживалась некоторое время и окончательно приобретала свойства легкой воды.

Легкая вода – это вода, разбитая на короткие цепочки по 4 и более молекул воды, так как при 3-х – это вещество уже будет водяным паром, а не жидкой водой. Причем в легкую воду отсортированы только отрицательно заряженные цепочки с непрочно сидящим электроном на конце каждой цепочки. Вода эта, обладая избыточным отрицательным статическим зарядом имеет также динамический положительный заряд в виде вихря электрино вокруг отрицательных цепочек. Динамический заряд частично (процентов на 5) компенсирует отрицательный заряд, что соответственно уменьшает гравитационную силу притяжения – вес воды: поэтому она легче обычной.

Легкая вода горит на открытом воздухе, и после всего сказанного это не кажется необычным. При ее поджигании (спичкой, как и углеводородного топлива) происходит отсоединение электронов с положительными ионами.

На автомобиле «Жигули» ездили на легкой воде вместо топлива.

Легкая вода в обычных условиях нестабильна и довольно быстро (в пределах 1 часа) превращается в обычную воду.

Один из вариантов водяного реактора для приготовления водяного топлива (из воды) можно представить в следующем виде. Реактор состоит из последовательно (по ходу воды) включенных трех элементов: 1 – насоса-дезин-тегратора; 2 – оптимизатора; активатора. В дезинтеграторе механически разбивают воду (монокристаллы) на короткие цепочки молекул. Этот процесс усиливается гидравлическими ударными и звуковыми волнами, и всегда сопутствующими им эфирными электродинамическими волнами. В оптимизаторе на основе, например, магнитов (возможно, в совокупности с концентраторами и катализаторами) дополнительно нейтрализуют и ослабляют межатомные связи воды. В активаторе разделяют воду на положительно и отрицательно заряженную с помощью электродов и водопроницаемой мембраны (мертвая и живая вода; электрофизически активированная вода; тяжелая и легкая). Отрицательно заряженную воду подают в двигатель внутреннего сгорания или в горелку, а положительно заряженную воду по байпасу направляют на повторную обработку. Экспериментально можно определить рациональную последовательность чередования элементов реактора и необходимость дополнительной обработки воды (высоким напряжением, ультрафиолетовым излучением и т.п.).

Американский пенсионер, придумавший, как победить рак, заявил, что научился поджигать воду с помощью нанотехнологий. «Газета.Ru» разобралась в интимных подробностях чудо-изобретений.

В понедельник американские средства массовой информации, среди которых оказался и вполне уважаемый телеканал CBS, поведала миру об удивительном изобретении – генераторе радиоволн, с помощью которого можно заставить гореть солёную воду. Оттуда чудо-машинка попала в рунет. Генератор разработал 63-летний радиолюбитель и неудавшийся медиамагнат Джон Канзиус – житель города Эри, расположенного на берегу одноименного великого озера в американском штате Пенсильвания.

Канзиус заставил воду запылать случайно, пытаясь опреснить ее с помощью своей машины, созданной для лечения рака.

По словам исследователя, облучение солёной воды мощным источником радиоволн приводит к выделению из неё водорода. Водород легко поджечь, и пока генератор работает, пробирка с солёной водой горит ярким пламенем. Пламя, кстати, ярко-жёлтое. Это заставляет усомниться в том, что горит один водород, пламя которого бесцветно; зато натрий, входящий в состав соли, даёт яркую жёлтую линию в спектре. Как бы там ни было, тепло от горения можно использовать в любом тепловом двигателе, что и продемонстрировал Канзиус журналистам, запустив от горелки двигатель Стирлинга.

ДЖОН КАНЗИУС

Бывший радиоинженер и владелец нескольких полупрофессиональных телевизионных станций, вещавших, по большей части, на родной для него городок Эри в штате Пенсильвания. Не имеет высшего образования, с детства увлекался радиотехникой. Некоторое время назад у него был диагностирован рак крови, лейкемия. Пациенту была назначена химиотерапия, от которой он позднее отказался. Канзиус надеется разработать собтвенный метод лечения рака.

На вторник, утверждает изобретатель, намечены его консультации с представителями двух мощнейших министерств США – энергетики и обороны. Найден способ получать энергию из одного из самых распространённых материалов на Земле. Не нужны ни нефть, ни газ, ни ядерная энергия.

У Канзиуса есть теория, объясняющая, как работает его изобретение. По его словам, речь ни в коем случае не идёт о чём-то похожем на электролиз.

«Это технология наночастиц, – не забывает модное слово радиолюбитель. – Резонансное радиоизлучение ослабляет межатомные связи водорода, кислорода, хлора и натрия, из которых состоит солёная вода, высвобождая самый лёгкий из этих газов – водород». Изобретатель уже успел смерить температуру сгорания (до 1700 градусов по Цельсию) и поэкспериментировать с солёностью воды, которую он использует.

Кажется, единственное, чего он до сих пор не сделал, как и признаёт в интервью Associated Press, – так это не измерил энергетический выход процесса, который предлагает использовать для решения энергетических проблем человечества.

Что-то подсказывает, что человек, так и не сумевший победить своей чудо-наномашинкой рак, энергетический кризис тоже не победит. Энергия, которая затрачивается на выделение водорода, не может быть больше той, что выделяется при его сгорании. Ведь сгорание – это всё то же объединение с кислородом, и поэтому начальный и конечный продукт всего процесса одинаковы. Изменяется лишь концентрация NaCl в растворе, однако, учитывая эндотермичность растворения поваренной соли в воде, непонятно, как увеличение концентрации может приводить к выделению энергии.

Впрочем, такие мелочи, как закон Ломоносова – Лавуазье, пока ещё ни разу не останавливали Джона Канзиуса. Его прибор для лечения рака тоже очень интересен. Для разрушения раковых клеток он использует «наночастицы» металлов. Если такая частица попадает в раковую клетку, то облучение ее электромагнитным излучением приводит к возникновению токов в металле, в результате чего частица нагревается до огромной температуры, убивая опухоль изнутри.

Единственное, до чего Канзиус пока не додумался, так это как заставить наночастицы попадать только в раковые клетки. Радиолюбитель предлагает «разработать специальные молекулы», к которым смогут присоединяться «наночастицы», которые, кстати, он тоже производит у себя в домашней лаборатории. Разработку «специальных молекул», которые будут проникать только в раковые клетки, но пощадят здоровые, Канзиус оставляет своим последователям.

Жизнь на Земле без воды невозможна. Не случайно первые поселения человека, которые затем переросли в первые города и государства Древнего мира, образовывались возле воды - рек, озер и морей.

Но в местах, где рек и озер мало, людей выручали родники.

Наверное, самый необычный из них находится недалеко от магистральной дороги Баку-Астара, на южной окраине поселка Арчиван Астаринского района.

Янар Булаг, или "Горящий родник" - настоящее чудо природы, главная отличительная особенность которого заключается в том, что вода в нем обладает способностью гореть. Хоть это и кажется настоящим чудом, ученые объясняют это явление достаточно просто. Все дело в минеральном составе воды, а точнее в наличии в ней серы. Другая его особенность в том, что он никогда не высыхает - даже в самые засушливые дни.

Жители Арчивана говорят, что в 70-е годы прошлого столетия в район приезжали геологи, которые обнаружили, что на территории деревни под землей протекает несколько рек. Они пробурили артезианский колодец глубиной в 80 метров и в результате появился этот родник.

То, что вода в источнике горит, тоже было обнаружено случайно. Так, кто-то заметил, что вода в роднике возгорается под лучами солнца, поэтому попробовал поджечь ее спичками. После этого родник стал называться Янар булаг, то есть Горящий родник.

Примечательно, что пить воду можно и тогда, когда она горит - вреда никакого не будет.

По словам жителей деревни, раньше мало кто знал об этом роднике, но теперь этот удивительный источник известен всей стране. Почти каждый, кто проезжает по магистрали Баку-Астара, останавливается возле дороги, чтоб набрать воды из этого целебного источника.


  • Янар Булаг, или "Горящий родник" – настоящее чудо природы

    © Sputnik / Rahim Zakiroghlu


  • © Sputnik / Rahim Zakiroghlu


  • © Sputnik / Rahim Zakiroghlu


  • © Sputnik / Rahim Zakiroghlu


  • © Sputnik / Rahim Zakiroghlu


  • © Sputnik / Rahim Zakiroghlu

1 / 7

© Sputnik / Rahim Zakiroghlu

А вода здесь действительно целебная, что подтвердили и лабораторные исследования. Так, минералы в ее составе способствуют улучшению работы пищеварительной системы. Нередко врачи советуют больным с проблемами пищеварения, желудочными и кишечными заболеваниями пить воду из этого источника. Серная вода также хорошо помогает при борьбе с сыпью на лице.

Большинство жителей деревни заваривают чай именно водой из Горящего родника.

Местные жители говорят, что нередко, в результате каких-то процессов, происходящих под землей, вода под давлением выбрасывается вверх на 5-7 метров.

В настоящее время этот родник, являющийся настоящим чудом природы, находится под охраной государства.

Водяная спичка - устройство для поджигания воды и проведения интересных опытов с взрывами.
Это конечно не термоядерный взрыв, но что водородный, это точно! Опыт безопасен, так как водород сгорает мгновенно, без накопления опасных объемов.
Предполагаю, что подобная буря в стакане, в масштабах планеты является источником возникновения интересных явлений - волн-убийц и цунами неизвестного происхождения , которые появляются буквально из ниоткуда , обрушиваются на судно и так же бесследно исчезают. На данный момент отсутствует внятное объяснение причин возникновения таких волн.

Возможно, все происходит так…

Анимация “Водяной”

При попадании молнии на поверхность Мирового океана, происходит водородный взрыв, а при удачном сочетании глубины воды и рельефа дна, направления удара и величины напряжения, продолжительности импульса и длительности его фронта - формируется огромная одиночная волна в результате импульсного электролиза поверхностного слоя воды, рассматриваемого в этой статье. Не последнюю роль в явлении играет резонанс.
В районе Бермудского треугольника эти условия выполняются наиболее часто, поэтому он получил свою печальную известность.
Примерно одна миллионная из 250 миллионов молний, ежегодно бьющих по поверхности Мирового океана, рождает супер-волну.
Белая волна - насыщенная газами вода, в которую попадают экипажи низколетящих летательных аппаратов, не является вымыслом и она присутствует в опытах. Вписывается в эту теорию и возникающий при ударе молнии электромагнитный импульс (ЭМИ), выводящий из строя навигационное оборудование.
В отличие от других экзотических способов поджигания воды, рассматриваемый вариант прост и имеет 100% повторяемость. Опыт показывает огромную скорость и производительность электролиза воды при коротком импульсном воздействии, а также позволяет безопасно исследовать электрогидравлический эффект и молнию в лабораторных условиях. Прибор можно использовать для изучения условий формирования блуждающих волн. В дальнейшем станет реальностью создание автоматических устройств, которые сгенерируют встречную волну для гашения разрушительных цунами и волн-убийц в охраняемых прибрежных зонах.

Предположение проверено и подтверждено на небольшом макете. GIF-анимация “Водяной” - формы волн: “одиночная башня”, “белая стена”, а также чудо-юдо с глазами и другие красивые элементы из воды, полученные при начальном для возникновения эффекта напряжении 145 вольт, показаны в тексте выше.
Любой желающий может повторить опыт и проверить предположение.

При нахождении электрода на поверхности жидкости, легко достигается эффект горения воды.


Анимация “Вода горит”

Огниво для воды.
Более года назад вышла статья “Импульсный электролиз на Google Science Fair ”, где в опытах по поджиганию воды использовался батарейный вариант импульсного электролизера. С тех пор утекло много соленой воды и был создан новый вариант устройства под названием водяная спичка (ВС). Батарейный вариант из прошлой статьи будет ВС-1, сегодняшний сетевой - ВС-2.
Ключевыми особенностями устройств являются:
- тонкий электрод - чем тоньше, тем лучше;
- работа на поверхности жидкости или в глубине, при помощи изолированного по длине катода;
- импульсный режим работы;
- короткое время импульса и длительная пауза;
- крутой фронт импульса;
- вода с большой соленостью в качестве рабочей жидкости.

Водород выделяется из воды при импульсном воздействии на поверхностный слой с использованием тонкого катода (отрицательный электрод, если кто не знает, да и сам постоянно забываю) и мгновенно сгорает в присутствии кислорода. Процесс выделения/сгорания очень быстрый, поэтому имеет взрывообразный характер. К счастью жителей планеты, процесс является затухающим - сколько водорода выделяется за время импульса, столько и сгорает. Устройство использует соленую воду, так как пресная требует большие напряжения для создания аналогичных размеров водородного пламени.
Работа прибора основана на электрогидравлическом эффекте (ЭГЭ), открытом великим российским ученым Юткиным . Чтобы никому не было обидно, можно утверждать, что в других странах этот эффект действовал задолго до его открытия в виде обыкновенной молнии . Но даже обычная молния до сих пор изучена не полностью - эльфы, джеты, спрайты, а также космические лучи для запуска процесса подтверждают это.
В устройствах, работающих на эффекте ЭГЭ, требуется высокое напряжение, разрядники, а также другие большие и опасные штучки. Но соленая вода и современные комплектующие позволяют собрать прибор на базе ручки от старого паяльника, используя относительно низкое рабочее напряжение. Хотя не обошлось без микроконтроллера, схема доступна для повторения любым радиолюбителем.

В предыдущем эксперименте с поджиганием воды моя роль сводилась к созданию импульсного электролизера. Результаты опытов оказались интересными, но дочка вместо исследования ЭГЭ готовится к ЕГЭ - это новомодное увлечение все больше и больше поглощает умы и время подрастающей молодежи, а также деньги их родителей. Поэтому, экспериментальных данных в этом рассказе будет мало, желающие почитать подробности могут это сделать в предыдущей статье . Я свой интерес удовлетворил созданием более мощного устройства и коротким фильмом.

Теория ЭГЭ.
Юткин в своих опытах использовал напряжение всего лишь 20...50 кВ и более, а емкость до 1 мкФ. Теория была опубликована в работе “Электрогидравлический эффект и его применение в промышленности”, в формате djVu находится .
То, что творится при ударе молнии в воду с ее напряжением в миллионы и миллиарды вольт трудно себе представить, так как энергия, запасенная в конденсаторе, и выделяющаяся при его разряде пропорциональна квадрату напряжения и определяется по формуле: W=СU^2/2.

По сравнению с разрядниками Юткина и тем более молнией, ВС-2 является детской игрушкой, но она позволяет исследовать явление в безопасных режимах в стакане на столе. Вышеприведенную формулу для расчета энергии можно использовать лишь частично, так как ВС-2 управляет количеством энергии, поступающей на катод, и разряд конденсатора производится не полностью.

По теории ЭГЭ считается, что причиной роста давления жидкости является расширение паровоздушной смеси, образовавшейся в результате мгновенного вскипания жидкости в канале стримера из-за его огромной температуры.
Но по результатам предыдущих опытов с ВС-1 можно сделать вывод, что источником роста давления является огромная скорость электролиза, а следовательно - выделение водорода и его последующее горение с большой скоростью (взрыв) в присутствии растворенного в воде кислорода.
То есть, при разряде происходит практически мгновенное разложение молекул воды на атомы водорода - топливо и кислорода - окислитель, и последующий взрыв гремучей смеси в зоне катода (кислород растворен в воде и пополняется из зоны анода).
Скорее всего, наблюдаемое кипение жидкости происходит в результате кавитации, после произошедшего взрыва водорода.
Чем больше плотность тока (определяется напряжением и диаметром катода), и чем короче фронт импульса, тем большее число молекул воды участвует в процессе электролиза и тем больше водорода выделяется при каждом импульсе.
Можно сделать вывод, что в ЭГЭ первичным является высокоскоростной электролиз, который порождает все последующие эффекты.

Гром - звук от молнии, является результатом взрыва водорода при разложении молекул воды, находящихся в атмосфере. Но если в атмосфере вследствие низкой плотности и высокой сжимаемости воздуха слышен лишь взрыв, то в воде образуются волны.
Каждый взрыв индивидуален. Сложный характер движения жидкости иллюстрирует фотография с “чудом-юдом”, где видна траектория движения разгоряченного после взрыва конца электрода.

Исследование импульсного электролиза на границе воздух-жидкость, а также с использованием тонкого закрытого электрода, погруженного в жидкость, позволит изучить явление более подробно. Данные опыты являются началом экспериментов, которые желательно продолжить с использованием современных научных приборов, более совершенной измерительной и записывающей техникой. Желательно провести измерение уровня ЭМИ. В некоторых фрагментах видео (особенно при использовании быстродействующего транзистора) заметно “захлебывание” звукового тракта камеры, чем это вызвано - воздействием ЭМИ на микрофон или его перегрузкой из-за резкого звука, непонятно.

Создание ВС-2.
За основу электрической схемы ВС-2 был взят импульсный электролизер ВС-1 из предыдущей разработки.
Трансформатор, показанный на схеме, любой доступный и он находится вне платы ВС-2. Можно его не использовать, если производится питание от электрической сети. Но при этом существует риск поражения электрическим током.

В качестве задающего генератора использован микроконтроллер PIC12F675, который формирует необходимую длительность импульсов.

Излишки напряжения (предполагалась работа до 800 В) гасятся на балластном резисторе, который выполнен из сборки полуваттных резисторов. Экономичность генератора импульсов и большая скважность работы способствуют низкому уровню мощности, выделяемой на данном резисторе. Последовательное соединение и большое количество резисторов препятствуют их пробою на предельных напряжениях.

Данный вариант блока питания был выбран из-за простоты, надежности, а также в связи с тем, что предполагалась работа не от сети 220 В, где можно получить на накопительных конденсаторах лишь 311 В, а от разделительного повышающего трансформатора, позволяющего значительно поднять напряжение. Из того, что имелось в наличии собрана схема из трех трансформаторов и получено переменное напряжение 544 В, из которого после выпрямления и фильтрации получается 769 В постоянного напряжения. Это уже что-то, по сравнению с 145 В, использованных в ВС-1.

Из предыдущих опытов стало понятно, что одним из факторов, влияющих на производительность установки, является минимальная длительность фронта импульса, поэтому схемотехника устройства направлена на увеличение крутизны:
- короткая длина электродов и проводов, размещение силовых элементов в непосредственной близости от электродов для уменьшения индуктивности силовой части схемы;
- мощный драйвер MOSFET TC4452, управляющий силовым транзистором;
- новейший супер-пупер транзистор в качестве скоростного ключа: CREE Z-FET™ MOSFET на карбиде кремния (SiC) CMF10120D с параметрами Qg = 47 nC, максимальным напряжением 1200 В, сопротивлением RDS(on) = 160 mΩ и импульсным током 49 А.
При отладке на макете (работа на длинных проводах) все работало отлично. После установки на ручку паяльника и сокращении длины проводников до электродов, первый экземпляр ключа не выдержал работы на высоком напряжении 769 вольт и был заменен на его брата-близнеца. При его высокой стоимости это было шоком. Разработка силовой электроники, это затратная область деятельности.
Второй экземпляр также не смог долго продержаться. Скорее всего, происходит выброс напряжения при отключении импульса, и транзистор вылетает по превышению максимального напряжения, пополняя список жертв эксперимента. Результат контрольного измерения - пробой по всем выводам. В следующий раз, при наличии большого количества транзисторов, можно поискать область безопасной работы между 311 и 769 В.

При работе устройства пробой транзистора наблюдается так: длительность импульса уже не ограничена контроллером, и на электроде, при касании поверхности воды происходит выделение значительной энергии. Электрод не выдерживает и немного сгорает, разбрызгивая частички меди - работает предохранителем. Фрагмент виден в середине фильма “Вода горит!” (ниже по курсу).

Помимо сокращения длительности фронта, другой путь увеличения добычи водорода, а следовательно высоты пламени - увеличение напряжения на электродах. Предполагалась получение напряжения импульса до 800 В, поэтому пришлось использовать пару конденсаторов. Два последовательно соединенных конденсатора 47 мкФ х 450 В дают результирующую емкость 23,5 мкФ х 900 В.

Богатырские накопительные конденсаторы, используемые в схеме, как и Илья Муромец лежали очень долго, поэтому была проведена их формовка . Для этого, на протяжении двух суток последовательно соединенные конденсаторы находились под выпрямленным сетевым напряжением 220 В. В первые сутки напряжение на них менялось следующим образом:
С1 - 241, 235, 216, 203, 196, 190, 187, 184, 179, 175, 172, 165, 162, 155, 154 В.
С2 - 065, 072, 104, 120, 127, 134, 139, 141, 145, 148, 154, 160, 159, 153, 153 В.
Суммарное напряжение на конденсаторах зависит от величины сетевого напряжения в соответствии с формулой U=220х1,414=311 В. На вторые сутки разница напряжений не превышала 1 вольта, что является показателем окончания процесса формовки.

Ручка ВС-2 взята от паяльника ЭПСН 220 В, 40 Вт. В ней имеются углубления и упоры, которые позволяют надежно зафиксировать печатную плату с элементами.

При работе устройства происходит значительный разброс капель соленой воды, поэтому компоненты устройства расположены внутри защитной пластиковой бутылки.

Как было доказано в опытах с ВС-1, высота факела пламени зависит от толщины электрода. Электроды ВС-2 изготовлены из медной проволоки диаметром 1,7 мм. Анод должен значительно превышать по размеру катод.

Тонкий медный катод диаметром 0,07 мм (меньше найти не удалось) припаян к концу несущего электрода. При уменьшении диаметра необходимо подобрать параметры импульса (напряжение, длительность, пауза), чтобы электрод практически не разрушался при коротком импульсном воздействии.

Как следует из экспериментов с ВС-1, при взрыве водорода образуется воронка и происходит колебание поверхности жидкости. При последующих импульсах волны набегают на электрод, и поверхностный взрыв превращается в подводный - происходит “захлебывание” электрода, и уменьшение высоты пламени водорода. Удержать электрод точно на поверхности в условиях сильного шторма при помощи одной руки (вторая управляет процессом фотосъемки) становится затруднительно. Чтобы облегчить задачу, в программе ВС-2 длительность импульса уменьшена вдвое - до 100 мксек, а продолжительность паузы между импульсами увеличена втрое - до 300 мсек по сравнению с программой работы ВС-1.

Программа работы ВС-2.
start:
HIGH GPIO.2 " включение ключа
PAUSEUS 100 " длительность импульса 100 мксек
LOW GPIO.2 " отключение ключа
PAUSE 300 " продолжительность паузы 300 мсек
GOTO start

Доработка программы

Если разрешить включение подтягивающих резисторов и установить миниатюрный выключатель между выводами контроллера 7 и 8, то можно сделать две частоты выходных импульсов:
@ DEVICE INTRC_OSC_NOCLKOUT, MCLR_OFF, WDT_ON, CPD_OFF, PWRT_ON, PROTECT_ON, BOD_ON " BANDGAP0_ON
" генератор внутренний, 4МГц, GP4 и GP5 фунцционируют как порты ввода-вывода
" MCLR внутренне подключен к питанию, GP3 работает как канал порта ввода
" сторожевой таймер WDT включен
" CPD защита памяти данных EEPROM отключена
" PROTECT защита памяти программ включена
" ON=enabled - включен=разрешено, OFF=disabled - отключен=запрещено

INCLUDE «modedefs.bas»
DEFINE NO_CLRWDT 1 " не вставлять CLRWDT
DEFINE OSC 4

" Настройка контроллера
OPTION_REG = %01111111 " разрешим включение подтягивающие резисторы, предделитель подключаем к WDT,
" коэффициент деления для WDT=1:128 (при F=4 МГц время отключения около 2,8 сек)
ANSEL = 0 " цифровой режим работы аналоговых входов
CMCON = %00000111 " отключение компаратора

" Текст программы

Start: "
CLEARWDT
HIGH GPIO.2
PAUSEUS 100 " 100 мксек
LOW GPIO.2
IF GPIO.0 = 0 THEN
PAUSE 100 " 100 мсек
ELSE
PAUSE 300 " 300 мсек
ENDIF
GOTO start
END


Фото и видео
Брызги воды разлетаются от электрода на расстояние более метра, поэтому съемку пришлось проводить на большом удалении.
Необходимо использовать защитное стекло на объектив и желательно прикрыть фотоаппарат, так как соленая вода для электроники, это не очень хорошо.
В идеале желательно использовать высокоскоростную камеру, но за неимением таковой, съемка велась на зеркалку Nikon D7000 с объективом 18-105 мм.
Фотографирование лучше проводить в ручном режиме, так как при маленьком времени импульса автоматика не справляется.
Перед съемкой как можно точнее сфокусировать закрепленный на штативе аппарат на место предполагаемых взрывов с помощью дополнительного высококонтрастного объекта, так как поймать фокусировку по воде трудно. По пробным съемкам выставить время выдержки.
Теперь можно рассчитать вероятность получения удачного снимка:
- время импульса - 100 мксек;
- пауза между импульсами - 0,3 сек;
- скорострельность аппарата в непрерывном высокоскоростном режиме - 6 кадров в секунду;
- выдержка, выставленная для снимка - 1/100 сек.
То есть вероятность крайне низкая.
Скорость выделения водорода огромная, поэтому получить четкое изображение факела пламени с такой выдержкой нереально. Уменьшая выдержку для получения красивого снимка столба пламени, мы делаем еще меньшую вероятность попадания вспышки в кадр. Как вариант, можно попробовать приспособления для автоматической синхронизации, но эти устройства отсутствуют.
Все вспышки, пойманные за время съемки, а также другие фотографии, относящиеся к этому проекту, можно посмотреть в альбоме . При анализе снимков видно, что каждый удар индивидуален, хотя электрод расположен почти одинаково. Поэтому формирование высокой волны на море, при ударе молнии, имеет даже меньшую вероятность, чем получение удачного снимка.

С видео все проще, но рассмотреть место взрыва подробно становится затруднительным.

Видео “Вода горит!” Показаны три фрагмента работы.
1. Скоростной транзистор CMF10120D при работе с напряжением 311 В.
2. CMF10120D в момент, когда он пробит при работе с напряжением 769 В.
3. Устаревший транзистор 2SK1358 при работе с напряжением 311 В.

Гифка “водяной” вначале статьи, была сделана из старых кадров с участием ВС-1. Для модели ВС-2 закрытый электрод не изготавливался, так как будет очень большой разброс капель.

Эффективность процесса.
Одним из самых интересных вопросов - КПД при получении водорода, хотя он сразу и сгорает.
К полезной части, для оценки КПД, относятся электромагнитный импульс излучений в различных диапазонах спектра, колебание поверхности жидкости, выброс капель, звуковая волна - но это трудно оценить в виде цифр. Наиболее простым способом определения выработки является визуальная оценка объема водорода по кадрам видеосъемки или фотографиям области пламени.
Для четкого определения границ необходимо поснимать взрывы заранее известного объема водорода, а затем анализировать вспышки при проведении импульсного электролиза поверхностного слоя. Хотя опытные химики и взрывники наверняка и без предварительных взрывов смогут определить границы водорода, участвующего в процессе.

Так как разряд заряженного конденсатора при импульсе происходит не полностью, то формулу по расчету его энергии использовать некорректно.
Затраты энергии считаются по анализу осциллограммы на небольшом резисторе, включенном в цепь электрода или на токоограничительном резисторе блока питания.

При предварительных испытаниях устройства, когда супер-транзистор недолго работал при высоком напряжении, высота пламени водорода достигала трех сантиметров, но на видео это не успело попасть, и объем остался неизвестен. После выхода из строя двух современных ключей, за неимением лучшего, был установлен транзистор 2SK1358, который не отличается выдающимися параметрами, что заметно даже по характеру звука в фильме “Вода горит”. Поэтому для установки ВС-2 объем водорода не определялся, а дальнейшая работа производилась на “пониженном” напряжении 311 В. В предыдущих опытах с ВС-1 выработка определялась по размеру пламени, потребление - по падению напряжения на резисторе в цепи электрода.

Характер взрыва водорода в смеси с кислородом и чистого можно посмотреть в фильме , найденном на youtube.

Продолжение работ.
Работа по импульсному электролизу перспективна и интересна людям, у некоторых имеется желание повторить и продолжить опыты. Был замечен интерес к ней со стороны людей, уже занимающихся подобными исследованиями, что очень похвально. Результатов пока не видно, но это дело времени.
В Интернете выложено большое число видео с процессом электролиза. Как правило, электролиз проводят при неотключаемом напряжении - постоянном или переменном. При этом остро встает проблема сохранности электрода, который изготавливают из материалов, устойчивых к высокой температуре.
В случае же импульсного воздействия, как правило, производится полный разряд накопившего энергию конденсатора на водную среду, высоковольтный ключ/разрядник производит лишь включение цепи.
Фишкой установок ВС-1 и 2 является то, что можно ограничить длительность импульса до минимально возможной. При этом, благодаря маленькому диаметру электрода, плотность тока в импульсе достигает огромных величин, но короткое время воздействия не позволяет разрушить даже тонкую медную проволоку. При достаточно высокой частоте следования импульсов можно добиться визуального эффекта непрерывного горения водорода на поверхности воды.

По результатам эксперимента можно сделать вывод, что для начальных опытов достаточно выпрямленного сетевого напряжения, желательно - гальванически развязанного от сети при помощи трансформатора. Потребление энергии устройством небольшое, так как ВС-2 работает в импульсном режиме с большой скважностью.
Схему можно упростить, что уменьшит размеры устройства. Накопительный конденсатор достаточно использовать один, емкостью 10...47 мкФ на напряжение 450 В. Составной балластный резистор можно изготовить из трех-четырех последовательно соединенных резисторов.
При доработке устройства можно ввести регулировку длительности импульса, паузы, напряжения на накопительном конденсаторе, предусмотреть режим одиночных импульсов.
Изучайте, исследуйте, это действительно интересно, и выкладывайте свои результаты.

Интересный фильм “Повелители молний” был снят автором Антоном Войцеховским в рублике «ЕХперименты». В фильме, в частности, упоминается испытательный полигон Общее количество молний 1,4 миллиарда в год.
350 миллионов - 25 % молний ударяет в земной шар.
Приблизительно 250 миллионов (точнее 248,5 миллионов) - 71 % молний приходится на поверхность Мирового океана.
Количество волн-убийц .
Спутники зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 25 метров.
За год количество волн составит 173 штуки.

Итого: На 250 миллионов молний приходится 173 больших волны. Грубо можно сказать, что примерно каждая миллионная молния рождает огромную волну.


P.S.
Выступление на конференции «ХТЯиШМ–20» с обобщением результата работ.

Как оказалось "Молнии играют роль в образовании горного ландшафта ".
А отсекать глыбы вполне может и ЭГЭ, что демонстрировал Юткин, в результате попадания молнии в воду, содержащуюся в каналах или пустотах горного массива.



 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з