Старт в науке. Лишайники - индикаторы состояния окружающей среды Растения - индикаторы водного режима почв

Растения-индикаторы очень востребованы в садоводстве, они подскажут как лучше обустроить участок. Хотя практически любая выращиваемая культура состоянием стеблей, листвы, корневой системы или другого органа может рассказать нам о нехватке или переизбытке питательных веществ в почве и ее влажности. Умение правильно определить, о чем именно сигнализируют растения, поможет вовремя исправить ситуацию и улучшить урожай.

Растения-индикаторы на даче

Избавить себя от нужды в постоянной диагностике культурных растений, можно обратившись к тем, что растут на участке без вашего участия, так называемым растениям-индикаторам. Осмотритесь и вы их точно найдете. Из года в год они хорошо растут сами по себе, независимо от того, насколько часто вы их убираете.

Определение состояния почвы — один из немаловажных факторов для садоводов-огородников, помогающий заблаговременно и более точно определить какие удобрения стоит вносить, что именно лучше сажать на том или ином месте.

Растения-индикаторы грунтовых вод

Влажность почвы

Растения – ксерофиты. Они легко переносят засуху, способны достаточно долго обходиться без влаги:

Растения – мезофиты. Лесные и луговые травы, растущие на увлажненных почвах, но не заболоченных:

Растения – гигрофиты. Предпочитают обильно увлажненные, заболоченные почвы:

Место с обильно увлажненной почвой, если позволяет территория, лучше обустроить как декоративную часть участка, например, сделать укромный уголок для отдыха с небольшим прудом. За неимением такой возможности для выращивания овощей придется хорошенько потрудиться над дренажем.

Такое место не подходит для деревьев и кустарников, им для хорошего роста необходим уровень грунтовых вод не ближе полутора или даже двух метров от поверхности почвы.

Уровень подземных вод

Хозяева участка, особенно нового, задаются вопросом наличия воды, например, для обустройства скважины или колодца, системы автополива или распределения растений. В этом придут на выручку растительные индикаторы. Обследуйте участок и найдите растения, определяющие наличие подземных вод.

На глубину залегания воды от 10 см укажет осока двух видов — дернистая и пузырчатая, 10–50 см осока острая и пурпурный вейник, от 50 см до метра лабазник вязолистный и канареечник. При прохождении воды на глубине 1–1,5 м, растительными индикаторами будут стрелец-трава, овсяник луговой, вика многоцветковая и полевичка, более 1,5 м – ползучий пырей, клевер красный, подорожник большой и костер безострый.

Растения-индикаторы почвы

Растения – олиготрофы указывают на малое содержание полезных элементов в почве. Это лишайники, вереск, клюква, лиственные мхи, багульник, брусника и черника. А также антеннария, белоус и цмин песчаный.

Средне-плодородная почва подходит для растений – мезатрофов , например, зеленых мхов, щитовника мужского и смолевки поникающей, дикой земляники, орегано, ветреницы лютиковой, марьянника дубравного, любки двулистной и т. д.

К индикаторам обогащенных почв относятся растения – эвтрофы и мегатрофы . Мох мний, крапива двух видов (жгучая и двудомная), папоротник женский, мокрица, хвощ лесной и лунник. А также папоротник страусник, морковник лесной, иван-чай, копытник, лебеда, паслен черный и др.

Растения – эвритрофы произрастают в почвах с разным уровнем плодородия, поэтому индикаторами не являются. Это вьюнок (березка), тысячелистник.

Наиболее важным веществом в питании и развитии растений является азот. От недостатка этого элемента растения увядают, замедляются в росте.

Индикаторы содержания азота в почве

  1. Растения – нитрофилы (богатая азотом почва). Марь обыкновенная, лебеда, пурпурная яснотка, пустырник, лопух, пролесник многолетний, хмель, яскирка, калужница, подмаренник, паслен сладко-горький и крапива двудомная.
  2. Растения – нитрофобы (бедная на азот почва). В таких местах хорошо растут практически все бобовые культуры, а также ольха, облепиха и джида (джигида), очиток, морковь дикая, пупавка.

Есть также наблюдения по растениям, указывающим на плотность почвы. Плотная земля на участке зарастает лапчаткой гусиной, лютиком ползучим, подорожником, пыреем ползучим. Лютик ползучий и одуванчик благоденствуют на суглинках. Рыхлую почву с повышенным содержанием органики обожают крапива и кровохлебка. Песчаники предпочитают коровяк и звездчатка средняя.

Растения-индикаторы кислотности почвы

В излишне кислых почвах нормальному росту культурных растений препятствует избыток алюминия и марганца, они способствуют нарушению белкового и углеводного обмена, что грозит частичной потерей урожая или полным увяданием растений. Чтобы вычислить состав земли на вашем участке присмотритесь к дикорастущим растениям.

Растения – ацидофилы (индикаторы почв с повышенной кислотностью pH менее 6,7)

Предельные ацидофилы , растущие на почвах с pH 3–4,5:

Средние ацидофилы – pH 4,5–6:

Слабые ацидофилы (pH 5–6,7):

Растения – нейтрофилы, идентифицирующие нейтральные и слабокислые почвы с уровнем pH 4,5–7,0

Растения, предпочитающие почву с pH 6,7–7 – обычные нейтрофилы : ива Хультена и мхи плевроциум и гилокомиум.

Почва с pH 6–7,3 идеальная среда для окололинейных нейтрофилов : журавельник цикутовый, клевер, батлачик луговой, пучка и сныть обыкновенная.

Растения – базофилы (индикаторы щелочных почв c pH 7,3–9)

Почвы с pH 6,7–7,8 идеально подходят для нейтральных растений – базофилов:

В почве с pH 7,8–9 – растут обычные растения – базофилы , такие как красная бузина и вяз шершавый, а также кальцефилы (опадающая лиственница, ветреница дубравная, лабазник шестилепестный) и растения – галофиты , такие как тамарикс мелкоцветный, бессмертник и некоторые виды полыни.

Бо́льшая часть овощных культур растет в почвах с низким уровнем кислотности и нейтральных, поэтому для хорошего роста и обильного урожая, повышенную кислотность необходимо нейтрализовать. Вариантов для этого немало, все зависит от требуемого результата и выращиваемых культур, ведь есть такие растения, которым слабокислая почва не мешает хорошо развиваться, например, редис, морковь и томат. И особенно — картофель. На щелочной почве он сильно поражается паршой и урожай резко падает.

Огурцы, кабачки, тыква, лук, чеснок, салат, шпинат, перец, пастернак, спаржа и сельдерей предпочитают слабокислую или нейтральную реакцию почвы (pH 6,4-7,2). А капуста и столовая свекла даже на нейтральной почве хорошо отзываются на подщелачивание.

Растения, не являющиеся индикаторами

Далеко не все виды растений могут идентифицировать почву, лучшими в этом деле являются именно те, что приспособлены к определенным условиям, и нетерпимы к любым их изменениям (стенобионты). Виды растений, легко приспосабливающиеся к изменениям состава почв, а также окружающей среды (эврибионты) нельзя называть индикаторами.

Индикаторами не являются те растения, чьи семена были случайно занесены на участок. Обычно они дают одиночные всходы, и при своевременной уборке больше не появляются.

Получается большинство растений, с которыми мы боремся и привыкли называть сорняками, могут быть незаменимыми помощниками в диагностике почвы. Растения-индикаторы позволяют сэкономить время и силы на сложных экспериментах, ведь все что нужно сделать – просто найти их на своем участке и распознать.

Различные организмы по-разному реагируют на те или иные антропогенные воздействия, являясь их показателями. Следует отметить, что индикаторными свойствами обладают не только отдельные виды организмов, но и их сообщества в целом. Преимущество живых индикаторов состоит в том, что они суммируют биологически важные данные об окружающей среде и отражают её состояние в целом, делают необязательным применение дорогостоящих трудоёмких физических и химических методов для измерения отдельных биологических параметров. Живые организмы реагируют на кратковременные и залповые выбросы токсикантов, которые может не зарегистрировать автоматизированная система контроля. Они отражают скорость происходящих в природной среде изменений, указывают пути и локализацию различного рода загрязнений в экологических системах, возможные пути попадания этих агентов в пищу человека, позволяют судить о степени вредности тех или иных веществ для живой природы и человека, а также помогают нормировать допустимую нагрузку на экосистемы, различающиеся по своей устойчивости к антропогенному воздействию .

Ввиду высокой отзывчивости мхов к изменениям условий произрастания и химического состава окружающей среды при широком распространении, наряду с лишайниками, их часто используют в качестве биоиндикаторов. В качестве показателей экологических условий используют видовой состав мхов и их обилие, а содержание минеральных веществ в организме мхов является интегральным показателем уровня загрязнения, отражающим более или менее усредненное содержание поллютантов за продолжительный период (время существования дерновинки или отдельной особи).

Мхи способны накапливать в своем организме широкий спектр техногенных поллютантов: от органических веществ, включая пестициды, до тяжелых металлов и радионуклидов. В качестве индикаторов-накопителей среди мохообразных чаще всего применяются распространённые в наших лесах зелёные мхи: Pleurozium schreberi (Brid.) Mitt., Dicranum polysetum Sw., Hylocomium splendens (Hedw.) B.S.G.. Данные виды используются в странах ближнего и дальнего зарубежья при реализации программ мониторинга содержания тяжёлых металлов в различных экосистемах: от сосновых лесов до геотермальных источников. В частности, наблюдения за содержанием Cd, Cu, Fe, Hg, Mn, Ni, Cr, V, Pb и Zn во мхах постоянно проводятся в Финляндии, Германии, Австрии, Польше, Испании и Италии, Новой Зеландии , США и Канаде. Мониторинговые исследования содержания тяжёлых металлов таким способом ведутся и в России и Беларуси, например, в Березинском биосферном заповеднике.

Наиболее важным представляется изучение мхов как накопителей радионуклидов, т.к. большая часть территории Гомельской области загрязнена радиоактивными выпадениями в результате аварии на Чернобыльской АЭС.

до 43,81 % от валового запаса в сосновом биогеоценозе (влажная суборь В3) . Наиболее реальные данные приводятся в: со временем не происходит существенных изменений роли биоты в аккумуляции 137Cs, а лишь его перераспределение в сторону напочвенного покрова. Мхи содержат 6 % (максимально 12 %) от суммарных запасов 137Cs в экосистеме, что сопоставимо с таковым значениями для древесного яруса.

Причиной формирования столь высокого содержания 137Cs в моховом покрове при малом периоде установления равновесия с окружающей средой может выступать способность мхов удерживать питательные вещества, транспортировать их в акропетальном направлении и повторно их использовать, что приводит к минимизации потерь элементов питания .

Таким образом, в условиях загрязнения территории 137Cs происходит избирательное накопление нуклида, и моховой покров способен становиться депо (до 12 % от суммарного содержания в экосистеме) легко вовлекаемых в биологический круговорот форм 137Cs. Основным выводом практически всех исследований касающихся накопительной способности мхов является констатация факта о возможности применения их как индикаторов-накопителей. Вопросы участия мхов в дальнейшей миграции накопленного ими 137Cs и влияния мохового покрова на доступность нуклида для корневого питания высших растений, сопряжённых с развитым моховым покровом, являются малоизученными.

Для быстрой оценки основных характеристик почвы на участке существует много методов, и один из них: по дикорастущим растениям-индикаторам. Благодаря им можно визуально определить, например, кислотность, механический состав, питательность, плотность, влажность почвы.

Большинство культурных садовых растений адаптированы к широким пределам рН и погибают только при крайних значениях кислотности почв.

Наименее чувствительны к кислотности колокольчики, фиалки, ирисы, гладиолусы, можжевельники, злаки. Типичные любители «кисленького» - азалии, рододендроны, верески. Нейтральную реакцию почвы предпочитают гиацинты, тюльпаны, виолы; щелочную - чистец пушистый, эдельвейс альпийский, гипсофила и др.

Индикаторы кислотности. Индикаторы очень кислых почв (рН 3,0-4,5) - сфагновые и зеленые мхи, плауны, вереск обыкновенный, белоус торчащий, пушица влагалищная, щучка дернистая.

Обитатели кислых и слабокислых почв - конский щавель, щавелек малый, торица полевая, майник двулистный, кошачья лапка двудомная, мать-и-мачеха, медуница неясная, мята полевая, вероника лекарственная, подорожник большой, папоротник мужской, фиалка собачья, пикульник красивый, куриное просо, хвощ полевой, лютики ползучий и едкий.

Индикаторы бедных почв - сфагновые мхи и лишайники, багульник болотный, брусника, клюква, черника, вереск обыкновенный, белоус торчащий, бессмертник песчаный, очиток едкий, кошачья лапка двудомная, ястребинка волосистая, щавелек малый. Плодородные участки предпочитают копытень европейский, яснотка, крапива, лебеда, белена черная, малина, мокрица, печеночница.

На высокое содержание азота указывают крапива двудомная и жгучая, кипрей, крестовник весенний, лебеда татарская, хмель, щирица запрокинутая, калужница. А присутствие растений из семейства Бобовые - дрока красильного, лядвенца рогатого, люцерны и астрагала - говорит о его недостатке. На низкое содержание в почве азота указывает и присутствие росянки, мелколепестника канадского, льнянки.

Индикаторы легких почв - бессмертник песчаный, очиток едкий, сосна обыкновенная. На тяжелых глинистых часто встречаются лапчатка гусиная, лютик ползучий, подорожник, горец птичий, бересклет бородавчатый.

Дрема белая - индикатор щелочных почв

Мокрица - индикатор нейтральных почв

Щучка дернистая - индикатор очень кислых почв

Крапива двудомная - высокое содержание азота в почве

Мята полевая - индикатор слабокислых почв

Если вам понравился этот материал, то предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку - ТОП о существующих экопоселениях, Родовых поместьях, их истории создания и все об экодомах вы можете найти там, где вам максимально удобно

Индикаторные растения - предмет изучения индикационной геоботаники и экологии растений. Принципы теории фитоиндикации (индикация условий среды с помощью растений) были предложены еще в 1910 и 1917 гг. российским ботаником Л.Г. Раменским (1938, 1971). Для исследования условий окружающей среды сообществ используются индикационные экологические шкалы, содержащие балловые оценки экологических свойств видов растений по различным факторам среды. То есть шкалы это таблицы, в которых для каждого вида указаны пределы его распространения по факторам увлажнения, богатства почвы, засоления, выпаса и т. д. Например, по Л.Г. Раменскому (1956) выделяются следующие факторы: увлажнение, режим переменности увлажнения, активное богатство и засоление почв, аллювиальность и пастбищная дигрессия луга. Так же популярными являются отечественные экологические шкалы Д.Н.Цыганова (1983) и европейские шкалы Г. Элленберга (Ellenberg, 1974, 1979) и Э. Ландольта (Landolt, 1977).

По отношению к кислотности почвы выделяют основные три группы растений: ацидофилы – растения кислых почв, нейтрофилы – обитатели нейтральных почв, базифилы – растут на щелочных почвах.

По отношению к влажности почв выделяются: ксерофиты – растения сухих местообитаний (кошачья лапка, ястребинка волосистая, очитки (едкий, пурпурный, большой), ковыль перистый), мезофиты растения обеспеченного увлажнения (Это большая часть луговых трав: тимофеевка, лисохвост луговой, пырей ползучий, ежа сборная, клевер луговой, горошек мышиный, чина луговая), гигрофиты – растения обильного увлажнения, проточного или застойного (голубика, багульник, морошка, селезеночник очереднолистный, белозор, калужница, герань луговая, камыш лесной, сабельник болотный, таволга вязолистная, горец змеиный, мята полевая, чистец болотный).

Так же по растениям можно определить глубины залегания грунтовых вод . По требовательности к почвенному плодородию растения образуют следующие экологические группы: мегатрофы – произрастают на самых богатых почвах (малина, крапива, иван-чай, таволга, сныть, чистотел, копытень, кислица, валериана, чина луговая, костер безостый), мезотрофы – растения достаточно обеспеченных минеральным питанием почв (майник двулистный, медуница, дудник, грушанка, гравилат речной, овсяница луговая, купальница, вероника длиннолистная), олиготрофы – растения бедных почв по минеральному питанию (сфагновые (торфяные) мхи, наземные лишайники, кошачья лапка, брусника, клюква, белоус, ситник нитевидный, душистый колосок).

Кроме общего плодородия почвы, можно выяснить обеспеченность почвы определенными элементами . Например, о высоком содержании азота свидетельствуют растения-нитрофилы – иван-чай, малина, крапива; на лугах и пашне – разрастания пырея, гусиной лапчатки, спорыша (горца птичьего). При хорошем обеспечении азотом растения имеют интенсивно-зеленую окраску. Наоборот, недостаток азота проявляется бледно-зеленой окраской растений, уменьшением ветвистости и числа листьев.

Высокую обеспеченность кальцием показывают кальциефилы: многие бобовые (например, люцерна серповидная). При недостатке кальция господствуют кальциефобы – растения кислых почв: белоус, щучка (луговик дернистый), щавелек, сфагнум и др. Эти растения устойчивы к вредному действию ионов железа, марганца, алюминия.

Таким образом, в Средней полосе России на лугах с различными характеристиками почвы можно встретить разные группы растений.

На суходольных лугах с кислой и бедной почвой часто обильно произрастают виды растений: Щавель малый (8-30 см), Хвощ полевой (10-15см), Душистый колосок (20-40 см), Кошачья лапка двудомная (5-15 см).

На остепненных лугах с известковой почвой можно встретить следующие виды растений: Люцерна серповидная (30-80 см), Дрок красильный (50-100 см), Ковыль перистый, Пупавка красильная.

На лугах произрастающих в условиях избыточного увлажнения встречаются и зачастую преобладают такие виды, как: Щучка дернистая, Осока лисья, Осока острая, Герань луговая, Мята перечная, Чистец болотный, Лапчатка гусиная, Лютик ползучий.

На лугах с богатой почвой произрастают такие виды растений, как: Костер безостый, Крапива двудомная, Иван чай узколистный, Чина луговая.

Так, например, о высоком плодородии свидетель­ствуют следующие растения: малина, крапива, иван-чай, таволга, сныть, чистотел, копытень, кислица, вале­риана, чина луговая, костер безостый, таволга.

Индикаторы умеренного (среднего) плодородия: майник двулистный, медуница, дудник, грушанка, гра­вилат речной, овсяница луговая, купальница, верони­ка длиннолистная.

О низком плодородии свидетельствуют сфагновые (торфяные) мхи, наземные лишайники, кошачья лапка, брусника, клюква, белоус, ситник нитевидный, душис­тый колосок.

Безразличны к почвенному плодородию: лютик едкий, пастушья сумка, мятлик луговой, Черноголовка, ежа сборная. Малотребовательна к почвенному плодо­родию сосна обыкновенная.

Кроме общего понятия «плодородие почвы», мож­но выяснить обеспеченность почвы определенными элементами.

Например, о высоком содержании азота свидетель­ствуют растения-нитрофилы - иван-чай, малина, кра­пива; на лугах и пашне -разрастания пырея, гусиной лапчатки, спорыша (горца птичьего). При хорошем обеспечении азотом растения имеют интенсивно-зеле­ную окраску.

Наоборот, недостаток азота проявляется бледно-зеленой окраской растений, уменьшением ветвистос­ти и числа листьев.

Высокую обеспеченность кальцием показывают кальциефилы: многие бобовые (например, люцерна серповидная), лиственница сибирская.

При недостатке кальция господствуют кальциефо-бы - растения кислых почв: белоус, щучка (луговик дернистый), щавелек, сфагнум и др. Эти растения ус­тойчивы к вредному действию ионов железа, марган­ца, алюминия.

Растения - индикаторы водного режима почв.

Индикаторами разного водного режима почв явля­ются растения-гигрофиты, мезофиты, ксерофиты.

Влаголюбивые растения (гигрофиты) - обитатели влажных, иногда заболоченных почв: голубика, багуль­ник, морошка, селезеночник очереднолистный, белозор, калужница, герань луговая, камыш лесной, сабельник болотный, таволга вязолистная, горец змеиный, мята полевая, чистец болотный.

Растения достаточно обеспеченных влагой мест, но не сырых и не заболоченных - мезофиты. Это боль­шая часть луговых трав: тимофеевка, лисохвост луго­вой, пырей ползучий, ежа сборная, клевер луговой, горошек мышиный, чина луговая, василек фригийский. -В лесу это брусника, костяника, копытень, золотая роз­га, плауны.

Растения сухих местообитаний (ксерофиты): коша­чья лапка, ястребинка волосистая, очитки (едкий, пур­пурный, большой), ковыль перистый, толокнянка, по­левица белая, наземные лишайники.

Растения - индикаторы глубины залегания грунтовых вод

Установление показателей глубины залегания грун­товых вод имеет значение для уточнения свойств почв и для выработки рекомендаций по мелиорации их. Для индикации глубины залегания грунтовых вод можно использовать группы видов травянистых растений (ин­дикаторные группы). Для луговых почв выделяется 5 групп индикаторных видов (табл. 1).

Таблица 1.

Индикаторные группы растений - указатели глубины грунтовых вод на лугах

(по Г.Л. Ремезовой, 1976 г.)

Индикаторная группа

Глубина грунтовых вод

I.Костер безостый, клевер луговой,

подорожник большой, пырей ползучий

Более 150 см

II. Полевица белая, овсяница луговая, горошек мышиный, чина луговая

III. Таволга вязолистная, канареечник

IV. Осока лисья, осока острая, вейник Лангсдорфа

V. Осока дернистая, осока пузырчатая

Помимо названных групп растений, есть переход­ные виды, которые могут выполнять индикаторные функции, например мятлик луговой, может быть вклю­чен как в первую, так и во вторую группы. Он указы­вает залегание воды на глубине от 100 до более 150 см. Хвощ болотный - от 10 до 100 см и калужница болот­ная - от 0 до 50 см.

В качестве биоиндикатора может быть использо­ван и один вид, если этот вид имеет массовое развитие в конкретном местообитании.

Глубину почвенно-грунтовых вод в лесных экоси­стемах и характер увлажнения почв можно определить по табл. 2.

Таблица 2.

Растения-индикаторы глубины залегания грунтовых вод и характера увлажнения почв

(по СВ. Викторову и др., 1988)

Индикаторы

Глубина грунтовых

группы растений

1. Ельник-кисличник

Кислица заячья, седмичник европейский,

майник двулистный

2. Ельник-черничник

Черника, кислица заячья, зеленые мхи

3. Ельники-долгомошники"

Черника, багульник-, мох политрихум

4. Ельники сфагновые

Багульник, андромеда, кассандра, сфагновые мхи

5. Ельники дубовые

Ясменник душистый, медуница неясная, звездчатка ланцетовидная, зеленчук

6. Сосново-

ельник-кисличник

Кислица заячья, папоротники, зеленые мхи

7. Сосново-ельник-

черничник

Черника, брусника, кислица, папоротники, зеленые мхи

8. Сосняк лишайниковый

Кошачья лапка, ястребинка волосистая, кладонии

9. Сосняк брусничный

Брусника, зеленые мхи

10. Сосняк-черничник

Черника, кислица, зеленые мхи

11. Сосняк орляковый

Орляк, кислица, майник двулистный

12. Сосняк долгомошный

Голубика, черника, мох

политрихум

13. Сосняк сфагновый

Багульник, кассандра, сфагнум

Растения- индикаторы кислотности почв

Кислотность - одно из характерных свойств по­чвы лесной зоны. Повышенная кислотность отрица­тельно сказывается на росте и развитии ряда видов растений. Это происходит из-за появления в кислых почвах вредных для растений веществ, например, ра­створимого алюминия или избытка марганца. Они нарушают углеводный и белковый обмен в растениях, задерживают образование генеративных органов и приводят к нарушению семенного размножения, а иногда вызывают гибель растений.

Повышенная кислотность почв подавляет жизне­деятельность почвенных бактерий, участвующих в разложении органики и высвобождении питательных веществ, необходимых растениям.

В лабораторных условиях кислотность почв мож­но определить универсальной индикаторной бумагой, набором Алямовского, рН-метром, а в полевых усло­виях - при помощи растений-индикаторов. В процес­се эволюции сформировались три группы растений: ацидофилы - растения кислых почв, нейтрофилы - обитатели нейтральных почв, базифилы - растут на щелочных почвах. Зная растения каждой группы, в по­левых условиях можно приблизительно определить кислотность почвы (табл. 7.3).

Таблица 7.3.

Растения-индикаторы кислотности почв (по Л. Г. Раменскому, 1956)

Биоиндикатор

рН почвы

Ацидофилы

1.1. Крайние ацидофилы

Сфагнум, зеленые мхи: гило-комиум, дикранум; плаун була­вовидный, плаун годичный, плаун сплюснутый, ожика волосистая, пушица влагалищная, подбел многолистный, кошачьи лапки, Сфагнум, Кассандра, цетрария, белоус, щучка дернистая, хвощ полевой, щавелек малый

1.2. Умеренные ацидофилы

Черника, брусника, багульник, калужница болотная, сушеница, лютик ядовитый, толокнянка, седмичник европейский, белозор болотный, фиалка собачья, сердечник луговой, вейник наземный

1.3. Слабые ацидофилы

Папоротник мужской, ветреница лютиковая, медуница неясная, зеленчук, колокольчик крапиволистный, колокольчик широколистный, бор развесистый, осока волосистая, осока ранняя, малина, смородина черная, вероника длиннолистная, горец змеиный, орляк, иван-да-марья, кисличка заячья

1.4. Ацидофильно-нейтральные

Зеленые мхи: гилокомиум, плеврозиум, ива козья

2. Нейтрофильные

2.1. Околонейтральные

Сныть европейская, клубника зеленая, лисохвост луговой, клевер горный, клевер луговой, мыльнянка лекарственная, аистник цикутный, борщевик сибирский, цикорий, мятлик луговой

2.2. Нейтрально-базифильные

Мать-и-мачеха, пупавка кра­сильная, люцерна серповидная, келерия, осока мохнатая, лядвенец рогатый, гусиная лапка

2.3. Базифильные

Бузина сибирская, вяз шершавый, бересклет бородавчатый

1

Экспериментально показано, что листостебельные мхи могут быть использованы в качестве биоиндикаторов загрязнения окружающей среды нефтепродуктами.

листостебельные мхи

нефтяное загрязнение

биоиндикация

1. Гусев А.П., Соколов А.С. Информационно-аналитическая система для оценки антропогенной нарушенности лесных ландшафтов // Вестник Томского государственного университета. – 2008. – № 309. – С. 176–180.

2. Железнова Г.В., Шубина Т.П. Мхи естественных среднетаежных растительных сообществ Южной части Республики Коми // Теоретическая и прикладная экология. – 2010. – № 4. – С. 76–83.

3. К организации комплексного мониторинга состояния природной среды в районе падения отделяющихся частей ракет-носителей на территории Северного Урала / И.А. Кузнецова, И.Н. Коркина, И.В. Ставишенко, Л.В. Черная, М.Я. Чеботина, С.Б. Холостов // Известия Коми научного центра Уральского отделения РАН. – 2012. – № 2(10) . – С. 57–67.

4. Серебрякова Н.Н. Влияние ксенобиотиков на физиологию и биохимию листостебельных мхов // Вестник Оренбургского государственного университета. – 2007. – № 12. – С. 71–75.

Развитие фундаментальных исследований, связанных с устойчивостью и изменением природных биоценозов под воздействием различных антропогенных факторов, в том числе - ракетно-космической деятельности, не теряет своей актуальности. Необходимость прогноза изменений среды и вызванных ими последствий возрастает пропорционально возрастающему воздействию на естественные природные комплексы. Столь же актуален и поиск путей предотвращения негативных последствий. Однако решить эти вопросы возможно лишь при определении самого факта наличия воздействия и его степени. Настоящее исследование посвящено изучению способности мхов к насыщению нефтепродуктами и возможности использования их в качестве биоиндикаторов при оценке антропогенного воздействия, в частности - нефтяного загрязнения на территории района падения отделяющихся частей ракет-носителей «Союз» (топливо - авиационный керосин) при выведении космических аппаратов на солнечно-синхронную орбиту с космодрома Байконур.

Территория проведения исследований находится на границе Свердловской и Пермской областей, координаты центра района падения (РП) - 60° 00’ с.ш.; 58° 54’ в.д., площадь - 2206,4 км2. За период эксплуатации территории в качестве района падения состоялось 6 пусков ракет-носителей (РН): в декабре 2006, ноябре и декабре 2007, сентябре 2009, июле и сентябре 2012 годов. Фрагменты отделяющихся частей ракет-носителей (ОЧ РН) обнаружены на г. Ольвинский Камень (N 59º 57’, E 59º 12’), на восточном склоне г. Сенной Камень (N 59º 59’, E 59º 06’) и в верховьях р. Улс (N 59º 59’, E 58º 59’). При осуществлении пусков ракет-носителей предусмотрено экологическое сопровождение приема фрагментов ОЧ РН, заключающееся в оценке содержания нефтепродуктов до и после падения ОЧ РН в основных депонирующих средах (почва, снег, вода водных объектов). Результаты этих работ не выявили каких-либо изменений состояния природной среды после пуска РН, как при визуальной оценке, так и при оценке загрязнения ракетно-космическим топливом. Результаты фонового мониторинга содержания нефтепродуктов в депонирующих средах подтвердили данное заключение . Те же результаты получены и при сопровождении пусков 2012 года: различий в содержании нефтепродуктов в допусковых и послепусковых пробах воды и почвы не обнаружено.

В 2011-2012 годах проведены исследования возможности использования зеленых листостебельных мхов в качестве биондикаторов при контроле состояния природной среды и оперативной оценки происходящих изменений при аэрогенном загрязнении нефтепродуктами. Экспериментально установлена их способность к накоплению нефтепродуктов при атмосферном загрязнении.

Широкое распространение, морфологические и физиологические свойства мхов, их способность переносить неблагоприятные условия среды и высокая чувствительность к экотоксикантам позволяют использовать эти растения в качестве биоиндикаторов . Мох «принимает» все микропримеси из атмосферы, удерживая и накапливая их в течение всего времени жизни . Несмотря на то, что за 3-5 лет зеленая (фотосинтезирующая) часть мха полностью обновляется, сам мох живет намного дольше. Мхи не имеют корневой системы, и, следовательно, вклад других источников, кроме атмосферных выпадений, в большинстве случаев органичен. Применяя современные методы химического анализа можно установить элементный состав атмосферных выпадений в месте сбора и количественно определить концентрацию того или иного химического вещества, накопленного мхом за определенный период времени. Использование мхов в качестве индикаторов атмосферного загрязнения имеет существенные преимущества перед традиционными методами, поскольку сбор образцов несложен, не требует дорогостоящей аппаратуры как для пробоотбора воздуха и осадков; процесс сбора, транспортировка и хранение мха менее трудоемок.

Чаще всего для биоиндикации рекомендуют использовать эпифитные мхи, произрастающие на коре деревьев и практически не связанные с почвой (на них практически не сказывается гетерогенный состав почв). Однако, при контроле загрязнения природной среды продуктами ракетно-космической деятельности, в равной степени воздействующей на все компоненты природного комплекса, названная особенность напочвенных мхов не мешает решению поставленной задачи.

Материал и методы исследования

В 2011-2012 гг. проведены экспериментальные исследования адсорбционной способности зеленых листостебельных мхов к накоплению нефтепродуктов. Образцы для исследований отобраны в основных мониторинговых точках района падения ОЧ РН, поскольку сразу же предполагалось использовать полученные значения как фоновые при дальнейших исследованиях в ходе экологического сопровождения пусков ракет-носителей. Места отбора образцов приведены в табл. 1.

Таблица 1

Места отбора проб листостебельных мхов

Место отбора проб

Координаты

Хр. Еловая грива

N 60º 07’ 17»

E 59º 18’ 10»

N 60º 06’ 55»

E 58º 53’ 20»

Хр. Кваркуш склон

N 60º 07’ 30’’

E 58º 45’ 25»

Хр. Кваркуш плато 1

N 60º 08’ 21»

E 58º 47’ 54»

Г. Сенной камень

N 59º 58’ 34’’

E 59º 04’ 59’’

Главный уральский хребет

N 60º 05’ 27»

E 59º 08’ 16»

Хр. Кваркуш плато 2

N 60º 09’ 33’’

E 58º 41’ 30’’

Г. Казанский камень

N 60º 06’ 41’’

E 59º 02’ 53’’

Г. Ольвинский камень

N 59о 54’ 10’’

E 59о 10’ 10’’

Г. Конжаковский камень

N 59º 37’ 59’’

E 59º 08’ 26’’

Для химического анализа отбирались пробы листостебельных мхов семейства Polytrichaceae (политриховые). При определении содержания нефтепродуктов, пробы мха экстрагировали гексаном, концентрацию нефтепродукта в экстракте определяли на приборе «Флюорат-02» по методике ПНД Ф 16.1:2.21-98 (Методика выполнения измерений массовой доли нефтепродуктов в пробах почв, грунтов флуориметрическим методом с использованием анализатора жидкости «Флюорат-02»). Отдельно определили влажность мха и проводили пересчет концентраций нефтепродуктов на сухое вещество пробы.

Эксперимент по насыщению мха керосином проводили статическим методом. В герметичный контейнер помещали навеску керосина. После ее испарения определяли его содержание в паровой фазе, затем в контейнер с пробой керосина вносили навеску пробы мха. Поскольку допускалось, что отмершие части растений и живые могут по-разному адсорбировать нефтепродукты, в первый год работы пробы по этому признаку были разделены, и отмершие и живые части анализировались раздельно. После выдержки в течение 5 суток определяли содержание керосина в пробах мха. Коэффициент разделения вычисляли как отношение концентрации керосина в пробе мха к остаточной концентрации керосина в паровой фазе.

Результаты исследования и их обсуждение

В табл. 2 представлены полученные значения содержания нефтепродуктов в сухих пробах мха: от 0,008 до 0,056 мг/кг сухой пробы (в среднем - 0,028 мг/кг) при влажности 23-56 %.

Учитывая, что пробы для определения содержания нефтепродуктов отбирались в периоды, не связанные с эксплуатацией территории в ракетно-космической деятельности (т.е. - вне пусков ракет-носителей), на территории, не подверженной антропогенному воздействию, полученные значения могут быть расценены при дальнейших исследованиях как фоновые.

Таблица 2

Результаты фонового мониторинга состояния листостебельных мхов в районе падения ОЧ РН

В 2011 году начато исследование адсорбционной способности мхов, и прежде всего проведен анализ способности к насыщению нефтепродуктами живых зеленых и отмерших частей мха. Обнаруженные различия незначительны и незакономерны (табл. 3), что позволяет ими пренебречь и в дальнейшем использовать в качестве анализируемой пробы образец мха целиком (без разделения на живые и отмершие части).

Таблица 3

Результаты экспериментального исследования по насыщению листостебельных мхов парами керосина

Место отбора проб

Коэффициент разделения содержания нефтепродуктов в сухом мхе (тв. фаза)/в паровой фазе

верхняя (зеленая) часть мха

нижняя (отмершая) часть мха

суммарная проба мха

Хр. Еловая грива

Хр. Кваркуш склон

Хр. Кваркуш плато 1

Г. Сенной камень

Хр. Кваркуш плато 2

Г. Казанский камень

Г. Ольвинский камень

Г.Конжаковский Камень

Полученные результаты убедительно подтверждают возможность использования листостебельных мхов в качестве организмов-биоиндикаторов при оперативной оценке атмосферного загрязнения природной среды нефтепродуктами. Тот факт, что живые зеленые и отмершие части мха в равной степени реагируют на насыщение парами керосина, существенно облегчает работу при использовании мхов в ведении комплексного экологического состояния природной среды.

Заключение

В результате проведенных экспериментальных исследований получены фоновые значения уровня содержания нефтепродуктов в листостебельных мхах, широко распространенных на территории Северного Урала, и в том числе - в районе падения отделяющихся частей ракет-носителей. В среднем в тканях мхов в естественной среде содержится 0,028 мг/кг сухой массы при влажности 23-56 %. Установлена высокая адсорбционная способность зеленых мхов: при пятидневной выдержке в парах керосина содержание нефтепродуктов в пробах мха возрастает на порядок. Полученные результаты подтверждают возможность использования листостебельных мхов в качестве биоиндикаторов как минимум при оценке атмосферного загрязнения нефтепродуктами. Определение фоновых значений позволяет рекомендовать использование этого объекта при экологическом сопровождении предстоящих пусков ракет-носителей как на территории Свердловской области, так и во всех иных районах падения ОЧРН, расположенных в лесной и горно-лесной зоне.

Работа выполнена по проекту ориентированных фундаментальных исследований в рамках соглашений о сотрудничестве УрО РАН с государственными корпорациями, научно-производственными объединениями № 12 -4-006-КА.

Библиографическая ссылка

Кузнецова И.А., Холостов С.Б. Листостебельные мхи как биоиндикаторы нефтяного загрязнения природной среды района падения отделяющихся частей ракет-носителей // Успехи современного естествознания. – 2013. – № 6. – С. 98-101;
URL: http://natural-sciences.ru/ru/article/view?id=32490 (дата обращения: 26.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з