Уравнения равновесия сходящейся пространственной системы сил. Равновесие произвольной пространственной системы сил – решение задачи. Точек без учета сил, приложенных к ним

Векторные условия равновесия произвольной системы сил: для равновесия системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы главный вектор системы сил был равен нулю и главный момент системы сил относительно любого центра приведения также был равен нулю . Иначе: для того чтобы ~0, необходимы и достаточны условия:

,
или
,
. (19)

Условия равновесия пространственной системы сил в аналитической форме

Для равновесия пространственной системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы три суммы проекций всех сил на оси декартовых координат были равны нулю и три суммы моментов всех сил относительно трех осей координат также были равны нулю .

. (20)

Условия равновесия пространственной системы сходящихся сил

Для равновесия пространственной системы сходящихся сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы проекций сил на каждую из трех прямоугольных осей координат были равны нулю :

;
;
, (21)

В случае плоской системы сходящихся сил одну из осей координат, обычно
, выбирают перпендикулярной силам, а две другие оси – соответственно в плоскости сил. Для равновесия плоской системы сходящихся сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы проекций этих сил на каждую из двух прямоугольных координатных осей, лежащих в плоскости сил, были равны нулю:

;
, (22)

Условия равновесия пространственной системы параллельных сил

Направим ось
параллельно силам:для равновесия пространственной системы параллельных сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма этих сил была равна нулю и суммы моментов сил относительно двух координатных осей, перпендикулярных силам, также были равны нулю :

Условия равновесия плоской системы сил

Расположим оси
и
в плоскости действия сил.

Условия равновесия плоской системы сил в первой форме: для равновесия плоской системы сил, действующих на твердое тело, необходимо и достаточно, чтобы суммы проекций этих сил на каждую из двух прямоугольных осей координат, расположенных в плоскости действия сил, были равны нулю и сумма алгебраических моментов сил относительно любой точки, находящейся в плоскости действия сил, также была равна нулю :

(24)

Для равновесия плоской системы параллельных сил, приложенных к твердому телу, необходимо и достаточно, чтобы алгебраическая сумма сил была равна нулю и сумма алгебраических моментов сил относительно любой точки, находящейся в плоскости сил, также была равна нулю:

(25)

Теорема о трех моментах (вторая форма условий равновесия): для равновесия плоской системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы алгебраических моментов сил системы относительно трех любых точек, расположенных в плоскости действия сил и не лежащих на одной прямой, были равны нулю :

Третья форма условий равновесия: для равновесия плоской системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы суммы алгебраических моментов сил относительно двух любых точек, лежащих в плоскости действия сил, были равны нулю и алгебраическая сумма проекций этих сил на какую-либо ось плоскости, не перпендикулярную прямой, проходящей через две моментные точки, также была равна нулю , т.е.

Рассмотрим произвольную пространственную систему сил, дей­ствующих на твердое тело. Приведем эту систему сил к заданному цен­тру и остановимся на том случае, когда главный вектор и главный мо­мент данной системы сил равны нулю, т.е.

(1) Такая система сил эквивалентна нулю, т.е. уравновешена. Сле­довательно, равенства (1) являются достаточными условиями равнове­сия. Но эти условия также и необходимы, т.е. если система сил нахо­дится в равновесии, то равенства (1) также выполняются.В самом деле, если бы система находилась в равновесии, но, например то данная система привилась бы к равнодействующей в центре приведения и равновесия не было бы. Если бы но Мо =**О, данная система привилась бы к паре и равновесия также не было пара не могут уравновесить друг друга. Таким образом, мы доказали, что для равновесия произвольной пространственной системы сил необ­ходимо и достаточно, чтобы главный вектор и главный момент этой системы относительно произвольно выбранного центра приведенияравнялись нулю. Условия (1) называются условиями равновесия в векторной форме. Для получения более удобной для практических целей аналити­ческой формы условий равновесия спроецируем равенства (1) на оси декартовой системы координат. В результате получим:

(2)условия равновесия системы параллельных сил в пространстве Для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси ко­ординат х, у и z, а также сумма моментов всех сил относительно этих же осей равнялись нулю.Пусть на твердое тело действует пространственная система па­раллельных сил. Так как выбор осей произволен, можно выбрать систе­му координат так, чтобы одна из осей была параллельна силам, а две

другие им перпендикулярны (рис. 1.38). При таком выборе координатных осей проекции каждой из сил на оси х и у и их моменты относительно оси z всегда будут равны ну­лю. Это означает,что

Эти равенства тождественно выполняются, независимо от того, находится ли данная система сил в равновесии или нет, т.е. перестают быть условиями рав­новесия. Поэтому в качестве условий равновесия останутся следующие:

Таким образом, для равновесия системы параллельных сил в пространстве необходимо и достаточно, чтобы сумма проекций всех сил на ось, параллельную этим силам, равнялась нулю и чтобы сулима их моментов относительно каждой из двух координатных осей, перпен­дикулярных силам, также равнялись нулю.

17,Теорема об эквивалентности 2ух пар сил а пространстве.

Приведение силы к заданному центру (метод Пуансо) – силу можно перенести параллельно самой себе в любую точку плоскости, если добавить соответствующую пару сил, момент которой равен моменту этой силы относительно рассматриваемой точки. Добавим к системе в точке A две силы, равные по величине между собой и величине заданной силы, направленные по одной прямой в противоположные стороны и параллельные заданной силе: Кинематическое состояние не изменилось (аксиома о присоединении). Исходная сила и одна из добавленных сил противоположно направленная образуют пару сил. Момент этой пары численно равен моменту исходной силы относительно центра приведения. Во многих случаях пару сил удобно изображать дуговой стрелкой. Приведение плоской произвольной системы сил к заданному центру – выбираем произвольную точку на плоскости и каждую из сил переносим по методу Пуансо в эту точку. Вместо исходной произвольной системы получим сходящуюся систему сил и систему пар. Сходящаяся система сил приводится к одной силе, приложенной в центре приведения, которая ранее называлась равнодействующей, но теперь эта сила не заменяет исходную систему сил, поскольку после приведения возникла система пар. Система пар приводится к одной паре (теорема о сложении пар), момент которой равен алгебраической сумме моментов исходных сил относительно центра приведения. В общем случае плоская произвольная система сил приводится к одной силе, называемой главным вектором и к паре с моментом, равным главному моменту всех сил системы относительно центра приведения: - главный вектор, - главный момент. A. A. Условием равновесия плоской произвольной системы сил является одновременное обращение главного вектора и главного момента системы в ноль: Уравнения равновесия (I форма) получаются в виде системы трех уравнений из условий равновесия с использованием выражений для проекций главного вектора: Существуют еще две формы уравнений Равновесия (II и III формы)

17.

27-28.зависимость между главными моментами сил относительно двух произвольно выбранных центров приведения. Инварианты системы сил

Пусть пространственная система сия приведена к центру О, т.е.

где Главный момент образует с направлением главного вектора не­который Угол а (рис 1.32)

Возьмем теперь новый центр приведения О1 и приведем все си­лы к этому центру. В результате снова получим главный вектор, равный главному вектору R, и новый главный момент, определяемый формулой где pк - радиус-вектор точки приложения силы Fk, проведенный из но­вого центра приведения О1 (см. рис. 1.32).Главный момент Мо1 относительно нового центра приведенияизменился и теперь образует с направлением главного вектора R неко­торый угол а1. Установим связь между моментами Мо и Мо1 .Из рисунка 1.32 видно, что (3) Подставляя (3) в равенство (2), получим (4)Далее, раскрывая скобки в правой части равенства (4) и вынося общий множитель О1О за знак суммы, имеем

( - проекции главного момента относительно точки О на координатные оси).

Приведение силы к заданному центру.

Чтобы привести силу, приложенную в какой-либо точке твердого тела к заданному центру необходимо:

1)Перенести силу параллельно самой себе в заданный центр не изменяя модуля силы.

2)В заданном центре приложить пару сил, векторный момент которой равен векторному моменту переносимой силы относительно нового центра. Эту пару сил называют присоединенной парой.

Действие силы на твердое тело не изменяется при переносе ее параллельно самой себе в другую точку твердого тела, если добавить пару сил.

33 32


34.Для плоской системы параллельных сил можно составить два уравнения равновесия.если силы параллельны оси У,то уравнения равновесия имеют вид.

Второе уравнение можно составить относительно любой точки.

35 для равновесия совершенно свободного тела, на которое действует пространственная произвольная система сил, необходимо и достаточно, чтобы выполнялись шесть уравнений равновесия. Если тело закреплено в одной точке, то оно имеет три степени свободы. Двигаться поступательно такое тело не может, а может только вращаться вокруг любой оси, т. е. вокруг осей координат. Для того чтобы такое тело находилось в равновесии, нужно, чтобы оно не вращалось, а для этого достаточно потребовать равенства нулю трех уравнений моментов

Итак, для того чтобы абсолютно твердое тело с одной закрепленной точкой, на которое действует произвольная пространственная система сил, находилось в равновесии, необходимо и достаточно, чтобы суммы моментов всех сил относительно трех взаимно перпендикулярных осей равнялись нулю.

Три других уравнения служат для ля определения составляющих реакции шарнира в точке крепления Nx, Ny, Nz

37. Тело, имеющее две закрепленные точки, имеет одну степень свободы. Оно может вращаться только вокруг оси, проходящей через эти две закрепленные точки.Равновесие будет в том случае, если тело не будет вращаться вокруг этой оси. Поэтому для равновесия достаточно потребовать, чтобы сумма моментов всех сил, действующих на тело, относительно оси, проходящей через две закрепленные точки, равнялась нулю: ∑Mxx(Fi)=0

38/Система тел представляет собой несколько тел, соединенных между собой каким-то образом. Силы, действующие на тела сис­темы, делят на внешние и внутренние. Внутренними называют силы взаимодействия между телами одной и той же системы, а внешними называют силы, с которыми на тела данной систе­мы действуют тела, не входящие в нее.

Если система тел находится в равновесии, то рассматриваем равновесие каждого тела в отдельности, учитывая внутренние силы взаимодействия между телами. Если задана плоская произвольная система N тел, то для этой системы можно составить 3N уравне­ний равновесия. При решении задач на равновесие системы тел можно также рассмат­ривать равновесие как системы тел в целом, так и для любых со­четаний тел. В случае рассмотрения равновесия системы в целом внутренние силы взаимодействия между телами не учитываются на основании аксиомы о равенстве сил действия и противодействия. Таким образом существует 2 типа нахождения равновесия систем тел…1сп В первую очередь рассматриваем всю конструкцию.а затем отсоединяем от этой системы какое-либо тело и рассм. Равновесие в нем. 2сп.Расчленяем сис-му на отдельные тела и сост.уравнение равновесия для каждого тела.

Статически определимые системы-это системы,в которых число неизвестных величин не превышает числанезависимых уравнений равновесия для данной системы сил.

Статически неопр. Системы-это системы в которых число неизвестных величин превышает число независимых уравнений равновесия для данной системы сил Kcт=R-Y где R-число реакций. Y-число независимых уравнений

41.После выхода тела из положения равновесия сила трения по­коя уменьшается и при движении ее называют силой трения скольжения, т. е. коэффициент трения скольжения несколько меньше коэффициента трения покоя. В технических расчетах принимают, что эти коэффициенты равны.С увеличением ско­рости движения для большинства материалов коэффициент тре­ния скольжения уменьшается. Коэффициент трения скольжения определяют экспериментально.

Сила трения скольжения направлена противоположно воз­можному движению тела.

Сила трения не зависит от площади соприкасающихся по­верхностей.

Максимальная сила трения пропорциональна нормальному давлению. Под нормальным давлением понимают полное давле­ние на всю площадь соприкосновения трущихся поверхностей: Fmax=fN

43.При наличии трения полная реакция шероховатой поверхно­сти отклонена от нормали к поверхности на некоторый угол <р, который в случае выхода тела из равновесия достигает максимума и называется углом трения tgφ=Fmax/N Fmax=fN тогда tgφ=f

Тангенс угла трения равен коэффициенту трения.

Конусом трения называют конус, описанный полной реакци­ей R вокруг направления нормальной реакции. Если коэффи­циент трения f во всех направлениях одинаков, то конус тре­ния будет круговым

Для равновесия тела на шероховатой поверхности необходимо и достаточно, чтобы равнодействующая активных сил находилась внутри конуса трения или проходила по образующей конуса

30.Модуль главного вектора Ro=√Rx^2+Ry^2 где Rx= ƩFkx Ry= ƩFky (Rx,Ry проекции главного вектора на соответствующие оси координат)

Углы образованные главным вектором с соответствующей осью координат Сos(x^Ro)=Rx/Ro Сos(y^Ro)=Ry/Ro

Модуль главного момента относительно выбранного центра приведения О Mo√Mox^2+Moy^2 где Mox=∑Mx(Fk) Moy=∑My(Fk) Mox Moy-проекции главного момента относительно точки О на координатные оси)

Углы образованные главным моментом с соотв.осями координат Сos(x^Mo)=Mox/Mo Сos(y^Mo)=Moy/Mo

Если Ro не=0 Mo=0 система сил может быть заменена одной силой

Ro=0 Mo не=0 система сил заменяется парой сил

Roне=0 Mo не=0 но Ro перпендикулярноMo заменяется одной силой не проходящей через центр приведения

31.Плоская система сил. Все силы этой системы лежат в одной плоскости. Пусть, например, это будет плоскость XAY, где A произвольный центр приведения. Силы этой системы на ось AZ не проектируются и моментов относительно осей AX и AY не создают, так как лежат в плоскости XAY (п. 13). При этом выполняется равенство


Учитывая это, получим условия равновесия для плоской системы сил:

Таким образом, для равновесия твердого тела под действием плоской системы сил необходимо и достаточно, чтобы равнялись нулю две суммы проекций сил на оси координат и сумма алгебраических моментов всех сил относительно любой точки плоскости.

39.распределенными называют силы, действующие на все точки данного объема или данной части поверхности, или линии. Рас­пределенные силы характеризуются интенсивностьюq , т. е. силой, приходящейся на единицу объема, поверхности или длины ли­нии. Распределенные силы обычно заменяют сосредоточенными.

Если распределенные силы действуют в плоскости на прямую линию, то их заменяют сосредоточенной силой следующим об­разом.

Равномерно распределенную нагрузку интенсивностью q за­меняют сосредоточенной силой Q =qL которая приложена в середине участка. Равномерно распределенной нагрузкой назы­вают силы, имеющие одинаковые величины и направления на заданном участке тела.

Если распределенные силы изменяются по линейному закону

(по треугольнику), то сосредоточенная сила Q = qmaxL/2- прило­жена в центре тяжести треугольника, расположенного на рас­стоянии - от его основания……………….

44.Трение качения - сопротивление движению, возникающее при перекатывании тел друг по другу. Проявляется, например, между элементами подшипников качения, между шиной колеса автомобиля и дорожным полотном. Как правило, величина трения качения гораздо меньше величины трения скольжения, и потому качение является распространенным видом движения в технике.

Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.

45.трение верчения. Предположим, что на горизонтальной плоскости лежит тяжелый шар, обозначим центр шара через О, а точку касания шара с плоскостью через С. Вращение шара вокруг прямой СО и называется верчением. Опыт показывает, что если момент пары, которая должна привести шар в верчение, очень мал, то шар в верчение не придет. Отсюда следует, что действие движущей пары парализуется какойто другой парой, от наличия которой и зависит трение верчения.

Один из методов расчета момента трения подшипника качения заключается в том, что момент трения делится на, так называемый, независимый от нагрузки момент M0 и зависимый от нагрузки момент M1, которые затем складываются и дают суммарный момент:

46две параллельные и направленные в одну сторону силы приводятся к одной силе – равнодействующей, приложенной в точке, делящей прямую на расстояния, обратно пропорциональные величинам сил. Последовательно складывая попарно параллельные силы приходим также к одной силе – равнодействующей R: Поскольку силу можно переносить по линии ее действия, то точка приложения силы (равнодействующей) по существу не определена. Если все силы повернуть на один и тот же угол и вновь провести сложение сил, то получаем другое направление линии действия равнодействующей. Точка пересечения этих двух линий действия равнодействующих может рассматриваться, как точка приложения равнодействующей, не изменяющей своего положения при одновременном повороте всех сил на один и тот же угол. Такая точка называется центром параллельных сил. Центр параллельных сил –точка приложения равнодействующей, не изменяющей своего положения при одновременном повороте всех сил на один и тот же угол

47Радиус-вектором точки называется вектор, начало которого совпадает с началом системы координат, а конец - с данной точкой.

Таким образом, особенностью радиус-вектора, отличающего его от всех других векторов, является то, что его начало всегда находится в точке начала координат (рис. 17).

Центр параллельных сил, точка, через которую проходит линия действия равнодействующей системы параллельных сил Fk при любом повороте всех этих сил около их точек приложения в одну и ту же сторону и на один и тот же угол. Координаты Центр параллельных сил определяются формулами:

где xk, yk, zk - координаты точек приложения сил.

48 Центр тяжести твердого тела – точка, неизменно связанная с этим телом, через которую проходит линия действия равнодействующей сил тяжести частиц тела при любом положении тела в пространстве. При этом поле тяжести считается однородным, т.е. силы тяжести частиц тела параллельны друг другу и сохраняют постоянную величину при любых поворотах тела. Координаты центра тяжести:

; ; , где Р=åр k , x k ,y k ,z k – координаты точек приложения сил тяжести р k . Центр тяжести – геометрическая точка и может лежать и вне пределов тела (например, кольцо). Центр тяжести плоской фигуры:

DF k – элементарная площадка, F – площадь фигуры. Если площадь нельзя разбить на несколько конечных частей, то . Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

49 Решение задач на определение положения (координат) центра тяжести однородной пластинки, системы тел находящихся на плоскости или пространстве сводится к составлению уравнений и дальнейшей подставки в него известных численных данных и вычисление результата:

Т.е. необходимо разбить систему на составляющие, найти положения центра тяжести этих составных элементов. Вычислить массу составных частей, выразив ее через удельную плотность – линейную, объемную или поверхностную, в зависимости от типа представленной системы. В конце решения удельная плотность сократиться, так что не стоит ее смущаться вводить (как правило она не дана, но в тексте задачи указывается, что пластина, стержни, плита однородны). Из особенностей этой задачи следует отметить две вещи: 1) определение центра тяжести у составляющей прямоугольной, квадратной формы или стержня, окружности не составляет труда – центр тяжести таких фигур находится по центру.

50. кругового сектора: ; Треугольник. Разбиением треугольника на тонкие линии,

параллельные каждой из его сторон, определяют, что поскольку центр

тяжести каждой линии лежит на ее геометрическом центре (в центре

симметрии), то центр тяжести треугольника лежит на пересечении его

медиан. Точка пересечения медиан делит их в соотношении (2:1).

Круговой сектор (рисунок 54). Центр тяжести лежит на оси

симметрии. Разбиением кругового сектора на элементарные треугольники

определяют дугу, образованную центрами тяжести треугольников. Радиус

дуги равен 2/3 радиуса сектора. Таким образом, координата центра

тяжести кругового сектора определяется

выражением xC = sin α .

51Полушар. Центр тяжести лежит на оси симметрии на расстоянии

3/8 от основания.

Пирамида (конус) (рисунок 55).

Центр тяжести лежит на линии,

соединяющей вершину с центром

тяжести основания на расстоянии ¾ от

Дуга окружности Центр тяжести лежит на оси симметрии и имеет

координаты xC = sin α ; уС = 0 .

Кинематика

1Кинематика , раздел теоретической механики, изучает движение материальных тел не интересуясь причинами, вызывающих или изменяющих это движение. Для нее важны лишь физическая обоснованность и математическая строгость в рамках принятых моделей Задачи кинематики Задать движение материальной точки (системы)- это значит дать способ определения положения точки (всех точек, образующих систему) в любой момент времени.
Задачи кинематики состоят в разработке способов задания движения точки (системы) и методов определения скорости, ускорения точки и других кинематических величин точек, составляющих механическую систему. траектория точки

Задать движение точки означает задать ее положение в каждый момент времени. Положение это должно определяться, как уже отмечалось, в какой-либо системе координат. Однако для этого не обязательно всегда задавать сами координаты; можно использовать величины, так или иначе с ними связанные. Ниже описаны три основных способа задания движения точки.

1. Естественный способ. Этим способом пользуются, если известна траектория движения точки. Траекторией называется совокупность точек пространства, через которые проходит движущаяся материальная частица. Это линия, которую она вычерчивает в пространстве. При естественном способе необходимо задать (рис. 1):

а) траекторию движения (относительно какой-либо системы координат);

б) произвольную точку на ней нуль, от которого отсчитывают расстояние S до движущейся частицы вдоль траектории;

в) положительное направление отсчета S (при смещении точки М в противоположном направлении S отрицательно);

г) начало отсчета времени t;

д) функцию S(t), которая называется законом движения**) точки.

2. Координатный способ. Это наиболее универсальный и исчерпывающий способ описания движения. Он предполагает задание:

а) системы координат (не обязательно декартовой) q1, q2, q3;

б) начало отсчета времени t;

в) закона движения точки, т.е. функций q1(t), q2(t), q3(t).

Говоря о координатах точки, мы всегда будем иметь в виду (если не оговорено противное) ее декартовы координаты.

3. Векторный способ. Положение точки в пространстве может быть определено также и радиус-вектором, проведенным из некоторого начала в данную точку (рис. 2). В этом случае для описания движения необходимо задать:

а) начало отсчета радиус-вектора r;

б) начало отсчета времени t;

в) закон движения точки r(t).

Поскольку задание одной векторной величины r эквивалентно заданию трех ее проекций x, y, z на оси координат, от векторного способа легко перейти к координатному. Если ввести единичные векторы i, j, k (i = j = k = 1), направленные соответственно вдоль осей x, y и z (рис. 2), то, очевидно, закон движения может быть представлен в виде*)

r(t) = x(t)i +y(t)j+z(t)k. (1)

Преимущество векторной формы записи перед координатной в компактности (вместо трех величин оперируют с одной) и часто в большей наглядности.

Пример. На неподвижную проволочную полуокружность надето маленькое колечко М, через которое проходит еще прямолинейный прут АВ (рис. 3), равномерно вращающийся вокруг точки А (= t, где =const). Найти законы движения колечка М вдоль стержня АВ и относительно полуокружности.

Для решения первой части задачи воспользуемся координатным способом, направив ось х декартовой системы вдоль стержня и выбрав ее начало в точке А. Поскольку вписанный АМС прямой (как опирающийся на диаметр),

x(t) = AM = 2Rcos = 2Rcoswt,

где R радиус полуокружности. Полученный закон движения называется гармоническим колебанием (колебание это будет продолжаться, очевидно, лишь до того момента, пока колечко не дойдет до точки А).

Вторую часть задачи будем решать, используя естественный способ. Выберем положительное направление отсчета расстояния вдоль траектории (полуокружности АС) против часовой стрелки (рис. 3), а нуль совпадающим с точкой С. Тогда длина дуги СМ как функция времени даст закон движения точки М

S(t) = R2 = 2R t,

т.е. колечко будет равномерно двигаться по окружности радиусом R с угловой скоростью 2 . Как явствует из проведенного рассмотрения,

нуль отсчета времени в обоих случаях соответствовал моменту, когда колечко находилось в точке С.

2.Векторный способ задания движения точки

Скорость точки направлена по касательной к траектории (рис. 2.1) и вычисляется, согласно (1.2), по формуле

Совмещаем начало координат с точкой пересечения линий дей­ствия сил системы. Проецируем все силы на оси координат и сум­мируем соответствующие проекции (рис. 7.4). Получим проекции равнодействующей на оси координат:

Модуль равнодействующей системы сходящихся сил определим по формуле

Направление вектора равнодействующей определяется углами

Произвольная пространственная система сил

Приведение произвольной пространственной системы сил к центру О.

Дана пространственная система сил (рис. 7.5, а). Приведем ее к центру О.

Силы необходимо параллельно перемещать, при этом образуется система пар сил. Момент каждой из этих пар равен произведению модуля силы на расстояние до центра приведения.

В центре приведения возникает пучок сил, который может быть заменен суммарной силой (главный вектор) F ГЛ (рис. 7.5, б).

Моменты пар сил можно сложить, получив суммарный момент системы М гл (главный момент).

Таким образом, произвольная пространственная система сил приводится к главному вектору и главному моменту.

Главный вектор принято раскладывать на три составляющие, направленные вдоль осей координат (рис. 7.5, в).

Обычно суммарный момент раскладывают на составляющие: три момента относительно осей координат.

Абсолютное значение главного вектора (рис. 7.5б) равно

Абсолютное значение главного момента определяется по форму­ле.

Уравнения равновесия пространственной системы сил

При равновесии F гл = 0; М гл = 0. Получаем шесть уравнений равновесия:

Шесть уравнений равновесия пространственной системы сил со­ответствуют шести независимым возможным перемещениям тела в пространстве: трем перемещениям вдоль координатных осей и трем вращениям вокруг этих осей.

Примеры решения задач

Пример 1. На тело в форме куба с ребром а = 10 см действуют три силы (рис. 7.6). Определить моменты сил относительно осей координат, совпадающих с ребрами куба.

Решение

1. Моменты сил относительно оси Ох:

2. Моменты сил относительно оси Оу.

Пример 2. На горизонтальном валу закреплены два колеса, г 1 = 0,4 м; г 2 = 0,8 м. Остальные размеры - на рис. 7.7. К коле­су 1 приложена сила F 1 , к колесу 2 - силы F 2 = 12 кН, F 3 = 4кН.

Определить силу F 1 и реакции в шарнирах А и В в состоянии равновесия.

Напомним:

1. При равновесии выполняются шесть урав­нений равновесия.

Уравнения моментов следует составлять относи­тельно опор А и В.

2. Силы F 2 \\Ox ; F 2 \\Oy; F 3 \\Oy.

Моменты этих сил относительно соответству­ющих осей равны нулю.

3. Расчет следует завершить проверкой, использовав дополнительные уравнения равновесия.

Решение

1. Определяем силу F\, составив уравнение моментов сил отно­сительно оси Oz:

2. Определяем реакции в опоре А. На опоре действуют две со­ставляющие реакции (Y A ; X A ).

Составляем уравнение моментов сил относительно оси Ох" (в опоре В).

Поворот вокруг оси Ох" не происходит:

Знак «минус» означает, что реакция направлена в противополож­ную сторону.

Поворот вокруг оси Оу" не происходит, составляем уравнение моментов сил относительно оси Оу" (в опоре В):

3.Определяем реакции в опоре В. На опоре действуют две со­ставляющие реакции (X B , Y B ). Составляем уравнение моментов сил относительно оси Ох (опора А):

Составляем уравнение моментов относительно оси Оу (опора А):

4.Проверка. Используем уравнения проекций:

Расчёт выполнен верно.

Пример 3. Определить численное значение силы P 1 , при котором вал ВС (рис. 1.21, а) будет находиться в равновесии. При найденном значении силы Р 1 определить опорные реакции.

Действующие на зубчатые колеса силы Р и Р 1 направлены по касательным к на­чальным окружно­стям колес; силы Т и Т 1 - по радиусам колес; силы А 1 па­раллельны оси вала. Т = 0,36Р, 7Т 1 = Р 1 ; А 1 = 0,12P 1 .

Решение

Опоры вала, изображенные на рис. 1.21, а, надо рассматривать как пространственные шарнирные опоры, препятствующие линейным перемеще­ниям в направлениях осей и и v (выбранная система координат показана на рис. 1.21, б ).

Освобождаем вал от связей и заменяем их действие реакциями V В, Н В, V C , Н С (рис. 1.21, б ). Получили прост­ранственную систему сил, для которой составляем урав­нения равновесия, пользуясь выбранной системой коор­динат (рис. 1.21,6):

где А 1 *1,25D/2 - момент относительно оси и силы A 1 , приложенной к правому зубчатому колесу.

Моменты относительно оси и сил Т 1 и А 1 (приложен­ных к среднему зубчатому колесу), Р 1 (приложенной к правому зубчатому колесу) и Р равны нулю, так как силы Р, T 1 , Р 1 параллельны оси и, а сила А 1 пересекает ось и.

откуда V С = 0,37P;

откуда V B =0,37P.

следовательно, реакции V B и V С определены верно;

где А 1 * 1,25D/2 - момент относительно оси v силы А 1 , приложенной к среднему зубчатому колесу.

Моменты относительно оси v сил Т, Р 1 (приложенной к среднему зубчатому колесу), А 1 и Т 1 (приложенных к правому зубчатому колесу) равны нулю, так как силы Т, Р 1 , Т 1 параллельны оси v, сила А 1 пересекает ось v.

откуда H C = 0,81Р;

откуда H С = 1,274Р

Составим проверочное уравнение:

следовательно, реакции Н В и Н С определены верно.

В заключение отметим, что опорные реакции получи­лись со знаком плюс. Это указывает на то, что выбран­ные направления V B , Н В, V C и Н С совпадают с действи­тельными направлениями реакций связей.

Пример 4. Сила давления шатуна парового дви­гателя Р = 25 кН передается на середину шейки колен­чатого вала в точке D под углом α = 30° к горизонту при вертикальном расположении щек колена (рис. 1.22). На конец вала насажен шкив ременной передачи. Натя­жение ведущей ветви ремня в два раза больше, чем ведомой, т.е. S 1 = 2S 2 . Сила тяжести маховика G = 10 кН.

Определить натяжения ветвей ременной передачи и реакции подшипников А и В, пренебрегая массой вала.

Решение

Рассматриваем равновесие горизонтального коленчатого вала со шкивом. Прикладываем в соответ­ствии с условием задачи заданные силы Р, S 1 , S 2 иG . Освобождаем вал от опорных закреплений и заменяем их действие реакциями V A , Н А, V B и Н В. Координатные оси выбираем так, как показано на рис. 1.22. В шарнирах А и В не возникает реакций вдоль оси w, так как натя­жение ветвей ремня и все остальные силы действуют в плоскостях, перпендикулярных этой оси.

Составим уравнения равновесия:

Кроме того, по условию задачи имеем еще одно уравне­ние

Таким образом, здесь имеется шесть неизвестных уси­лий S 1, S 2 , Н А, V A , Н В иV B и шесть связывающих их уравнений.

Уравнение проекций на ось w в рассматриваемом примере обращается в тождество 0 = 0, так как все силы лежат в плоскостях, перпендикулярных оси w.

Подставляя в уравнения равновесия S 1 =2S 2 и решая их, находим:

Значение реакции Н В получилось со знаком минус. Это значит, что в действительности ее направление про­тивоположно принятому на рис. 1.22.

Контрольные вопросы и задания

1. Запишите формулы для расчета главного вектора пространственной системы сходящихся сил.

2. Запишите формулу для расчета главного вектора простран­ственной системы произвольно расположенных сил.

3. Запишите формулу для расчета главного момента простран­ственной системы сил.

4. Запишите систему уравнений равновесия пространственной системы сил.

5. Какое из уравнений равновесия нужно использовать для опре­деления реакции стержня R 1 (рис. 7.8)?

6. Определите главный момент системы сил (рис. 7.9). Точка приведения - начало координат. Координатные оси совпадают с реб­рами куба, ребро куба равно 20 см;F 1 - 20кН;F 2 - 30кН.

7. Определите реакцию Хв (рис. 7.10). Вертикальная ось со шки­вом нагружена двумя горизонтальными силами. Силы F 1 и F 2 па­раллельны осиОх. АО = 0,3 м; ОВ = 0,5 м; F 1 = 2кН; F 2 = 3,5 кН.



Рекомендация. Составить уравнение моментов относительно оси Оу" в точке А.

8. Ответьте на вопросы тестового задания.

Выше (6.5, случай 6) было установлено, что

Учитывая, что , , спроектируем формулы (6.18) на Декартовы оси координат. Имеем аналитическую форму уравнений равновесия произвольной пространственной системы сил :

(6.19)

Последние три уравнения имеют место из-за того, что проекция момента силы относительно точки на ось, которая проходит через эту точку, равна моменту силы относительно оси (формула (6.9)).

Вывод произвольной пространственной системы сил , которая приложена к твердому телу, мы должны составить шесть уравнений равновесия (6.19), потому имеем возможность с помощью этих уравнений определить шесть неизвестных величин .

Рассмотрим случай пространственной системы параллельных сил. Систему координат выберем так, чтобы ось Оz была параллельна линиям действия сил (рис. 6.11).

Таким образом, остались три уравнения:

Вывод . При решении задач на равновесие параллельной пространственной системы сил, которая приложена к твердому телу, мы должны составить три уравнения равновесия и имеем возможность с помощью этих уравнений определить три неизвестных величины .

На первой лекции по разделу «Статика» мы выяснили, что имеют место шесть разновидностей систем сил , которые могут встретиться в Вашей практике инженерных расчетов. Кроме того есть две возможности расположения пар сил: в пространстве и в плоскости. Сведем все уравнения равновесия для сил и для пар сил в одну таблицу (табл. 6.2), в которой в последней колонке отметим количество неизвестных величин, которые позволит определить система уравнений равновесия.

Таблица 6.2 – Уравнения равновесия разных систем сил

Вид системы сил Уравнения равновесия Количество определяемых неизвестных
Сходящаяся плоская
Параллельная плоская ( оси 0у ) т. А 0ху
Произвольная плоская (в плоскости 0ху) т. А – произвольная, принадлежащая плоскости 0ху

Продолжение таблицы 6.2

Продолжение таблицы 6.2

Вопросы для самоконтроля по теме 6

1. Как найти момент силы относительно оси?

2. Какая зависимость существует между моментом силы относительно точки и моментом этой же силы относительно оси, которая проходит через эту точку?

3. В каких случаях момент силы относительно оси равен нулю? А когда он наибольший?

4. В каких случаях система сил приводится к равнодействующей?

5. В каком случае пространственная система сил приводится:

– к паре сил;

– к динамическому винту?

6. Что называется инвариантом статики? Какие Вы знаете инварианты статики?

7. Запишите уравнения равновесия произвольной пространственной системы сил.

8. Сформулируйте необходимое и достаточное условие равновесия параллельной пространственной системы сил.

9. Изменится ли главный вектор системы сил при изменении центра приведения? А главный момент?


Тема 7. ФЕРМЫ. ОПРЕДЕЛЕНИЕ УСИЛИЙ

Как было выяснено в § 4.4, необходимые и достаточные условия равновесия пространственной системы сил, приложенных к твердому телу, можно записать в виде трех уравнений проекций (4.16) и трех моментов (4.17):

, , . (7.14)

Если тело полностью закреплено, то действующие на него силы находятся в равновесии и уравнения (7.13) и (7.14) служат для определения опорных реакций. Конечно, могут встретиться случаи, когда этих уравнений недостаточно для определения опорных реакций; такие статически неопределимые системы мы рассматривать не будем.

Для пространственной системы параллельных сил уравнения равновесия принимают вид (§ 4.4[‡]):

, , . (7.15)

Рассмотрим теперь случаи, когда тело закреплено лишь частично, т.е. связи, которые наложены на тело, не гарантируют равновесия тела. Можно указать четыре частных случая.

1. Твердое тело имеет одну неподвижную точку. Иначе говоря, оно прикреплено к неподвижной точке при помощи идеального сферического шарнира.

Поместим в эту точку начало неподвижной системы координат. Действие связи в точке А заменим реакцией; так как она неизвестна по модулю и по направлению, то мы ее представим в виде трех неизвестных составляющих , , , направленных соответственно вдоль осей , , .

Уравнения равновесия (7.13) и (7.14) в этом случае запишутся в виде:

1) ,

2) ,

3) ,

4) ,

5) ,

6) . (7.16)

Последние три уравнения не содержат составляющих реакции, так как линия действия этой силы проходит через точку А . Следовательно, эти уравнения устанавливают зависимости между активными силами, необходимыми для равновесия тела, причем три первых уравнения могут быть использованы для определения составляющих реакции.

Таким образом, условием равновесия твердого тела, имеющего одну неподвижную точку, является равенство нулю каждой из алгебраических сумм моментов всех активных сил системы относительно трех осей, пересекающихся в неподвижной точке тела .

2. Тело имеет две неподвижные точки. Это, например, будет иметь место, если оно прикреплено к двум неподвижным точкам при помощи шарниров.



Выберем начало координат в точке А и направим ось вдоль линии, проходящей через точки А и В . Заменим действие связей реакциями, направив составляющие реакции вдоль координатных осей. Обозначим расстояние между точками А и В через а ; тогда уравнения равновесия (7.13) и (7.14) запишутся в следующем виде:

1) ,

2) ,

3) ,

4) ,

5) ,

6) . (7.17)

Последнее уравнение не содержит сил реакции и устанавливает связь между активными силами, необходимую для равновесия тела. Следовательно, условием равновесия твердого тела, имеющего две неподвижные точки, является равенство нулю алгебраической суммы моментов всех активных сил, приложенных к телу, относительно оси, проходящей через неподвижные точки . Первые пять уравнений служат для определения неизвестных составляющих реакций , , , , , .

Заметим, что составляющие и не могут быть определены в отдельности. Из третьего уравнения определяется только сумма + и, следовательно, задача в отношении каждого из этих неизвестных для твердого тела является статически неопределимой. Однако, если в точке В находится не сферический, а цилиндрический шарнир (т.е. подшипник), не препятствующий продольному скольжению тела вдоль оси вращения, то и задача становится статически определимой.

Тело имеет неподвижную ось вращения, вдоль которой оно может скользить без трения. Это значит, что в точках А и В находятся цилиндрические шарниры (подшипники), причем составляющие их реакций вдоль оси вращения равны нулю. Следовательно, уравнения равновесия примут вид:

1) ,

2) ,

4) ,

5) ,

6) . (7.18)

Два из уравнений (7.18), а именно, третье и шестое, накладывают ограничения на систему активных сил, а остальные уравнения служат для определения реакций.

Тело опирается в трех точках на гладкую поверхность, причем точки опоры не лежат на одной прямой. Обозначим эти точки через А , В и С и совместим с плоскостью АВС координатную плоскость Аху . Заменив действие связей вертикальными реакциями , и , запишем условия равновесия (7.14) в таком виде:

3) ,

4) ,

5) ,

6) . (7.19)

Третье – пятое уравнения могут служить для определения неизвестных реакций, а первое, второе и шестое уравнения представляют собой условия, связывающие активные силы и необходимые для равновесия тела. Конечно, для равновесия тела необходимо выполнение условий , , , так как в точках опоры могут возникнуть только реакции принятого выше направления.

Если тело опирается на горизонтальную плоскость более чем в трех точках, то задача становится статически неопределимой, так как при этом реакций будет столько, сколько точек, а уравнений для определения реакций останется только три.

Задача 7.3. Найти главный вектор и главный момент системы сил, изображенной на рис. Силы приложены к вершинам куба и направлены вдоль его ребер, причем , . Длина ребра куба равна а .

Проекции главного вектора находим по формулам (4.4):

, , .

Его модуль равен . Направляющие косинусы будут

, ;

, ;

, .

Главный вектор изображен на рис.

,

а модуль главного момента по формуле (4.8)

Теперь определим направляющие косинусы главного момента:

, ;

, .

Главный момент изображен на рис. Угол между векторами и вычисляется по формуле (4.11) и

Границы искомой области найдем из условий:

,

.

Отсюда находим

,

.

На рис. искомая область, построенная при , заштрихована. При вся поверхность пластины будет безопасной.



 
Статьи по теме:
Рыба на решетке - самое вкусное и ароматное блюдо
Особенность приготовления рыбы на мангале состоит в том, что независимо от того, как вы будете жарить рыбу — целиком или кусочками, кожу снимать не следует. Тушку рыбы нужно разделать очень аккуратно — старайтесь разрезать ее таким образом, что голова и х
Ю.Андреев - Живой журнал! Андреев Ю.А. Юрий Андреев: биография
Андреев Ю.А. - об авторе Юрий Андреевич родился в Днепропетровске. В 1938 году семья переехала из Днепропетровска в Смоленск, где встретила войну (отец - кадровый военный). В 1944 семья переехала в Ленинград по месту службы отца. Окончил школу с золотой
Мастер-класс для педагогов на тему «Создание электронных тестов» методическая разработка по технологии на тему
1C:Электронное обучение 1С:Электронное обучение. Экзаменатор Разработка электронных тестов Позволяет разрабатывать собственные электронные тесты и импортировать тесты других разработчиков. Также могут быть импортированы и другие учебные материалы: файлы,
Старец Павел (Груздев) Старец архимандрит павел груздев
Архимандрит Павел (в миру Павел Александрович Груздев) родился 10 января 1910 года в деревне Барок Мологского уезда Ярославской губернии.Когда его отца Александра Александровича Груздева призвали во время войны 1914 года в армию, маленького шестилетнего П