Допуск зависимый и независимый. Расчет зависимых допусков размеров, определяющих расположение осей отверстий. Государственный стандарт российской федерации

Отклонения расположения поверхностей и координирующих размеров, а также отклонение размеров (диаметры, ширины и т. д.) могут проявляться как совместно, так и независимо друг от друга. Взаимное их влияние возможно как в процессе изготовления, так и в процессе контроля. Поэтому принято рассматривать независимые и зависимые допуски расположения поверхностей и координирующих размеров.

Независимый допуск – допуск взаимного расположения или формы, числовое значение которого постоянно и не зависит от действительных размеров рассматриваемых поверхностей или профилей.

Зависимый допуск расположения или формы – это переменный допуск, минимальное значение которого указывается в чертеже или технических требованиях и которое допускается превышать на величину, соответствующую отклонению действительного размера поверхности детали от предела максимума материала (наибольшего предельного размера вала или наименьшего предельного размера отверстия). Для обозначения зависимого допуска после его числового значения в рамке пишут букву М в кружочке à.

Согласно ГОСТ Р 50056-92 установлены понятия – минимальное и максимальное значение зависимого допуска.

Минимальное значение зависимого допуска – числовое значение зависимого допуска, когда рассматриваемый (нормированный) элемент и (или) база имеют размеры, равные пределу максимума материала.

Минимальное значение зависимого допуска может быть равным нулю. В этом случае отклонения расположения допускаются в пределах поля допуска размера элемента. При нулевом зависимом допуске расположения допуск размера является суммарным допуском размера и расположения.

Максимальное значение зависимого допуска – числовое значение зависимого допуска, когда рассматриваемый элемент и (или) база имеют размеры, равные пределу минимума материала.

Зависимые допуски назначаются только для элементов (их осей или плоскостей симметрии), представляющих собой отверстия или валы.

Существуют следующие зависимые допуски формы:

– допуск прямолинейности оси цилиндрической поверхности;

– допуск плоскостности поверхности симметрии плоских элементов.

Зависимые допуски взаимного расположения:

– допуск перпендикулярности оси или плоскости симметрии относительно плоскости или оси;

– допуск наклона оси или плоскости симметрии относительно плоскости или оси;

– допуск соосности;

– допуск симметричности;

– допуск пересечения осей;

– позиционный допуск оси или плоскости симметрии.

Зависимые допуски координирующих размеров:

– допуск расстояния между плоскостью и осью или плоскостью симметрии;

– допуск расстояния между осями (плоскостями симметрии) двух элементов.

Зависимые допуски расположения назначают главным образом в случаях, когда необходимо обеспечить собираемость деталей, сопрягающихся одновременно по нескольким поверхностям с заданными зазорами или натягами. Применение зависимых допусков формы и расположения удешевляет изготовление и упрощает приемку продукции.

Числовое значение зависимого допуска может быть связано:

1) с действительными размерами рассматриваемого элемента;

2) с действительными размерами базового элемента;

3) с действительными размерами и базового и рассматриваемого элементов.

При обозначении зависимого допуска на чертежах по ГОСТ 2.308-79 используется значок à.

Если зависимый допуск связан с действительным размером рассматриваемого элемента, условный знак указывается после числового значения допуска.

Если зависимый допуск связан с действительным размером базового элемента, условный знак указывается после буквенного обозначения базы.

Если зависимый допуск связан с действительным размером рассматриваемого элемента и размерами базового элемента, то знак à указывается дважды после числового значения допуска и после буквенного обозначения базы.

Зависимые допуски обычно контролируют комплексными калибрами, являющимися прототипами сопрягаемых деталей. Эти калибры только проходные и гарантируют беспригоночную сборку изделий. Комплексные калибры достаточно сложны и дороги в изготовлении, поэтому применение зависимого допуска целесообразно только в серийном и массовом производстве.

Независимым допуском расположения осей отверстий называется допуск, числовое значение которого постоянно для большого количества одноименных деталей (например, партии деталей) и не зависит от действительного размера (диаметра) отверстия или (а может быть ”и“) от размера базы. Если на чертеже нет никаких указаний, то допуск считается независимым.

Смысл приведенного понятия сводится к тому, что при независимом допуске при измерении необходимо определить погрешность расположения таким образом, чтобы значение размера (диаметра) отверстия не влияло на значение отклонения расположения.

На ранее приведенных рисунках допуски расположения являются независимыми, т.е. межцентровые расстояния должны быть выдержаны в пределах допусков, заданных позиционными отклонениями, либо – предельными отклонениями и не зависят, от того, каковы действительные диаметры отверстий (но, безусловно, отверстия, в свою очередь, должны быть изготовлены в пределах своих допустимых размеров).

Зависимый допуск расположения – допуск, указываемый на чертеже или в других технических документах в виде минимального значения, которое допускается превышать на значение, зависящее от отклонения действительного размера рассматриваемого элемента (отверстия) или (и) базы от предела максимума материала, т.е. для отверстия от наименьшего предельного размера отверстия.

Зависимый допуск расположения выделяется символом М,

стоящим рядом с допуском расположения или (и) с базой.

Полное значение зависимого допуска расположения определяется по формуле:

,

где – минимальное значение допуска, указываемое в чертеже (постоянная для всех деталей часть зависимого допуска);

– дополнительное значение допуска, зависящее от действительных размеров отверстий.

Если отверстие будет изготовлено с максимальным размером (диаметром), то будет максимальным и определится, как

, ,

где – допуск отверстия.

Интерпретируя вышеуказанное, можно утверждать, что минимальный гарантированный зазор для прохождения крепежной детали, может быть увеличен (что происходит при отклонениях действительных размеров сопрягаемых элементов от проходных пределов), при этом становится допустимым и соответственно увеличенное отклонение расположения, разрешаемое зависимым допуском.

Вышесказанное поясним на конкретных примерах.

На рис. 7, а позиционный допуск расположения независимый (на чертеже нет никаких указаний). Это означает, что центр отверстия ø10Н12 должен находиться в пределах круга диаметром 0,1мм и не входить за пределы, несмотря на то, каков действительный диаметр отверстия.

На рис. 7, б позиционный допуск зависимый (на это указывает символ М рядом с допуском расположения). Это означает, что минимальное значение допуска расположения равно 0,1 мм (при диаметре отверстия ).

При увеличении диаметра отверстия допуск расположения можно увеличивать (за счет образующегося зазора в соединении). Максимальное значение допуска расположения может быть, когда отверстие будет изготовлено на верхнем предельном размере, т.е. когда = 10,15 мм. В итоге

,

и тогда , т.е. центр отверстия ø 10Н12 может находиться в круге диаметром 0,25 мм.

5.Числовые значения допусков

расположения отверстий

Для соединения (рис. 1, а, тип А) в обеих соединяемых пластинах 1 и 2 предусмотрены сквозные отверстия под проход крепежа. Для соединения типа Б – сквозные отверстия только в 1-й пластине. Диаметральный зазор между крепежом и отверстием в пластине должен гарантировать свободное прохождение болта (заклепки) в отверстие, чтобы обеспечить собираемость. Гарантия может быть достигнута, когда действительный размер отверстия будет получен близким к минимальному предельному размеру отверстия , а вал (болт, заклепки) – к максимальному предельному размеру (обычно , где d – номинальный размер болта). Разница между размерами и – это минимальный зазор, являющийся гарантированным, так как при большем зазоре, чем собираемость тем более будет обеспечена. Минимальный диаметральный зазор и берется в качестве позиционного допуска расположения отверстий, причем:

– для соединений типа А: ;

– для соединений типа Б: (зазор только в одной пластине).

Здесь Т – основной позиционный допуск в диаметральном выражении (удвоенное предельное смещение от номинального расположения по ГОСТ 14140-81).

Для стандартных крепежных деталей существуют разработанные таблицы с диаметрами сквозных отверстий под них и соответствующие им наименьшие (гарантированные) зазоры (ГОСТ 11284-75). Одна из таких таблиц приведена в приложении 1.

2. При постановке размеров, “лесенкой” с привязкой к сборочной базе:

Для соединений типа А – ;

Для соединений типа Б – .

В приложении 2 “Перерасчет позиционных допусков на предельные отклонения размеров, координирующих оси отверстий. Система прямоугольных координат” по ГОСТ 14140-81 приведены числовые значения предельных отклонений в зависимости от заданного позиционного допуска для некоторых схем простановки размеров.

В приложении 3 приведены примеры перевода позиционных допусков в предельные отклонения для некоторых схем простановки размеров с обозначениями допусков на чертежах.

Зависимый допуск по ГОСТ Р 50056-92 - переменный допуск формы, расположения или координирующего размера, минимальное значение которого указывают на чертеже или в технических требованиях и который допускается превышать на величину, соответствующую отклонению действительного размера рассматриваемого и (или) базового элемента детали от предела максимума материала. Согласно ГОСТ 25346-89 предел максимума материала - термин, относящийся к тому из предельных размеров, которому соответствует наибольший объем материала, т.е. наибольшему предельному размеру вала d max или наименьшему предельному размеру отверстия D min .

Зависимыми могут назначаться следующие допуски:

  • допуски формы:
    • - допуск прямолинейности оси цилиндрической поверхности;
    • - допуск плоскостности поверхности симметрии плоских элементов;
  • допуски расположения (ориентации и месторасположения):
  • - допуск перпендикулярности оси или плоскости симметрии относительно плоскости или оси;
  • - допуск наклона оси или плоскости симметрии относительно плоскости или оси;
  • - допуск соосности;
  • - допуск симметричности;
  • - допуск пересечения осей;
  • - позиционный допуск оси или плоскости симметрии;
  • допуски координирующих размеров:
  • - допуск расстояния между плоскостью и осью или плоскостью симметрии элемента;
  • - допуск расстояния между осями или плоскостями симметрии двух элементов.

Полное значение зависимого допуска:

где Т т in - минимальное значение зависимого допуска, указанное

на чертеже, мм;

Гдоп - допускаемое превышение минимального значения зависимого допуска, мм.

Зависимые допуски рекомендуется назначать, как правило, для тех элементов деталей, к которым предъявляются требования собираемости в соединениях с гарантированным зазором. Допуск Т т[П рассчитывают исходя из наименьшего зазора соединения, а допускаемое превышение минимального значения зависимого допуска определяют следующим образом:

Для вала

Для отверстия

где d a и /) д - действительные размеры соответственно вала и отверстия, мм.

Величина Г доп может изменяться от нуля до максимального значения. d

Если вал имеет действительный размер d min , а отверстие D max , то

Для вала

Для отверстия

где TdwTD - допуск размера соответственно вала и отверстия, мм.

В этом случае зависимый допуск имеет максимальное значение:

Для вала

Для отверстия

Если зависимый допуск связан с действительными размерами рассматриваемого и базового элементов, то

где Гд 0П.р и Гд 0П.б - допускаемые превышения минимального значения зависимого допуска, зависящие от действительных размеров соответственно рассматриваемого и базового элементов детали, мм.

Примерами применения зависимых допусков могут служить:

  • - позиционный допуск расположения сквозных отверстий под крепеж (рис. 2.17, а);
  • - допуски соосности ступенчатых втулок и валов (см. рис. 2.17, б , в), собираемых с зазором;
  • - допуск симметричности расположения пазов, например, шпоночных (см. рис. 2.17, г);
  • - допуск перпендикулярности осей отверстий и торцовых поверхностей корпусных деталей под стаканы, заглушки, крышки.

Рис. 2.17. а - позиционного допуска отверстий под крепеж; б, в - соосности поверхностей ступенчатых втулки и вала; г - симметричности шпоночного паза относительно оси вала

Зависимые допуски расположения более экономичны и выгодны для производства, чем независимые, так как они расширяют величину допуска и позволяют использовать менее точные и трудоемкие технологии изготовления деталей, а также снизить потери от брака. Контроль деталей с зависимыми допусками расположения осуществляют, как правило, с помощью комплексных проходных калибров.

Зависимый допуск формы или расположения обозначают на чертеже знаком , который размещают согласно ГОСТ 2.308-2011:

  • - после числового значения допуска (рис. 2.17, а), если зависимый допуск связан с действительными размерами рассматриваемого элемента;
  • - после буквенного обозначения базы или без буквенного обозначения в третьем поле рамки (см. рис. 2.17, б), если зависимый допуск связан с действительными размерами базового элемента;
  • - после числового значения допуска и буквенного обозначения базы (см. рис. 2.17, г) или без буквенного обозначения (см.

рис. 2.17, в), если зависимый допуск связан с действительными размерами рассматриваемого и базового элементов.

С 01.01.2011 г. введен в действие ГОСТ Р 53090-2008 (ИСО 2692:2006). Этот ГОСТ частично дублирует действующий с 01.01.1994 г. ГОСТ Р 50056-92 в части нормирования и указания на чертежах требований максимума материала (MMR - maximum material reguirement) в случаях необходимости обеспечения собираемости деталей в соединениях с гарантированным зазором. Требования минимума материала (LMR - least material reguirement), обусловленные необходимостью ограничения минимальной толщины стенки деталей, ранее не предъявлялись.

Требования MMR и LMR позволяют объединить ограничения, накладываемые допуском размера и геометрическим допуском в одно комплексное требование, более точно соответствующее предполагаемому назначению деталей. Это комплексное требование позволяет без ущерба для выполнения деталью своих функций увеличить геометрический допуск нормируемого (рассматриваемого) элемента детали, если действительный размер элемента не достигает предельного значения, определяемого установленным допуском размера.

Требование максимума материала (как и зависимый допуск по ГОСТ Р 50056-92) указывают на чертежах знаком а требование минимума материала - знаком (L), помещаемыми в рамку для указания геометрического допуска нормируемого элемента после численного значения этого допуска или (и) условного обозначения базы.

Расчет значений геометрических допусков Т м, обеспечивающих требование максимума материала, можно выполнить аналогично расчету зависимых допусков (см. формулы 2.10-2.15).

Обозначив аналогично зависимым допускам Т м, геометрические допуски, к которым предъявлены требования минимума материала - T L , можно записать:

где T m in - минимальное значение геометрического допуска, указанное

на чертеже, мм;

Тдоп - допускаемое превышение минимального значения геометрического допуска, мм.

Значения Т доп определяют следующим образом:

Для вала

Для отверстия

d min , а отверстие D max , то

Если вал имеет действительный размер d max , а отверстие Z) min , то

Для вала

Для отверстия

В этом случае геометрический допуск имеет максимальное значение:

Для вала

Для отверстия

Если геометрический допуск связан с действительными размерами нормируемого и базового элементов, то значение Г доп находят по зависимости (2.15).

Примерами применения требований максимума материала являются примеры назначения зависимых допусков по ГОСТ Р 50056-92 на рис. 2.17. Пример применения требования минимума материала приведен на рис. 2.18, а.

Как требования максимума материала, так и требования минимума материала могут быть дополнены требованием взаимодействия (RPR - reciprocity requirement), позволяющим увеличить допуск размера элемента детали, если действительное геометрическое отклонение (отклонение формы, ориентации или месторасположения) нормируемого элемента не использует полностью ограничений, накладываемых требованиями MMR или LMR. Пример применения требований минимума материала и взаимодействия допуска размера 05О_ о,оз9 и допуска концентричности приведен на рис. 2.18, б, а пример применения требования максимума материала и взаимодействия размера 16_о,ц и допуска перпендикулярности - на рис. 2.18, в.

Пример 2.2. Задан зависимый допуск соосности отверстия 016 +ОД8 относительно наружной поверхности 04О_о,25 втулки, показанной на рис. 2.19.

Из условного обозначения видно, что допуск соосности зависит от действительного размера элемента, ось которого является базовой осью, т.е. поверхности 04О_ о 25.

Рис. 2.18. а - минимума материала; б - минимума материала и взаимодействия; в - максимума материала и взаимодействия

Рис. 2.19.

Минимальное значение допуска соосности, указанное на чертеже (7шт = 0,1 мм), соответствует пределу максимума материала наружной поверхности, в данном случае размеру d a = d max = 40 мм, т.е. при d a = d max = 40 мм

Если наружная поверхность будет иметь действительный размер d a = d min , допуск соосности можно увеличить:

Промежуточные значения размера d a и соответствующие им значения допуска Т м приведены в табл. 2.9, а на рис. 2.20 показан график зависимости допуска соосности от действительного размера наружной поверхности втулки.

Рис. 2.20.

Значения зависимого допуска соосности, мм (см. рис. 2.20)

Вот смотрю я на более-менее доступные CAD-системы типа Kompas, T-Flex, SolidWorks, SolidEdge и на худой конец Inventor и не нахожу элементарного функционала, нужного конструкторам литейной оснастки, по большей мере для литья металлов, а не пластмасс. Ну вот где в этих программах такие элементарные возможности как: 1. Возможность на чертеже отображать линии перехода условно согласно п. 9.5 ГОСТ 2.305-2008 "ЕСКД. Изображения - виды, разрезы, сечения".
2. Возможность оформлять чертежи и передавать данные в спецификацию для деталей, полученных из заготовок согласно п. 1.3 "Чертежи изделий с дополнительной обработкой или переделкой" по ГОСТ 2.109-73 ЕСКД. "Основные требования к чертежам". В SW это реализовано с помощью макросов SWPlus, а в других программах как?
3. Возможность автоматически получать виды и разрезы на чертеже отливки с тонкими линиями обработанных поверхностей детали согласно п.3 ГОСТ 3.1125-88 - "ЕСТД. Правила графического выполнения элементов литейных форм и отливок." В SW2020 это наполовину реализовано с помощью вида с альтернативным положением (на видах можно отобразить эти тонкие линии, на разрезах нельзя). Как с этим в других программах?
4. Возможность проставить размер радиуса к наклонённому скрулению, то есть к эллипсу, которые присутствуют сплошь и рядом на деталях с уклонами (отливки, поковки). Знаю что в SW это можно сделать. Как с этим в других программах?
5. Возможность задавать на 3D модели детали из металла, полученной литьём с последующей мехобработкой и на 3D моделях отливки точность отливки по ГОСТ Р 53464-2009 - "Отливки из металлов и сплавов. Допуски размеров, массы и припуски на механическую обработку". И соответственно автоматически получать допуски на размеры литых поверхностей. Этого нет ни в одной программе. Разработчики недолюбливают что ли литейщиков?

Вдобавок неплохо было бы узнать разницу между массивом в солиде и других кадах. В том же тфлексе массив быстро создаётся и меньше тормозит, но только там массив - это единый объект. Скрыть/погасить один из компонентов массива или выбрать для него другую конфигурацию не получится, как в солиде. И раз уж тфлексеры тусят в ветке солида, поплачусь им, может подскажут чего. Мне чертежи в dxf сохранять нужно. А тфлекс, как оказалось не переводит чертежи в масштаб 1:1 перед экспортом и из сплайнов делает полилинии или отрезки с дугами. Со сплайнами, я так понял, что всё однозначно, а с масштабом? Помасштабировать в автокаде не предлагать, возраст не тот) По поводу работы с массивами можно почитать (на англ.) - https://forum.solidworks.com/thread/201949 Что в вольном и сокращённом переводе) означает - в большинстве случаев лучше сделать несколько массивов вместо одного.

Необходимо изготовить 73,2 тыс мелких шпилек двух разных размеров: 37 мм и 32 мм по цене 10 руб/шт из вашего материала. Материал AISI 431 или 14Х17н2
Необходима производительность 2-8 тыс шпилек в неделю. PULSAR23_Винты_контактные_23.07.19.rar P23_Винт_контактный_37_(2листа)_23.07.19.pdf P23_Винт_контактный_32_(2листа).pdf

Вот на маил облако залил https://cloud.mail.ru/public/heic/ZRvyFHBXn буду так пробовать делать,интересно уже причина того почему эта сборка не объединяется в одну из 3х,но вот 2 трети легко срослись,только последнюю не могу вставить...вернее вставить могу,срастить последнюю не выходит

Ряды зависимых допусков расположения осей отверстий для крепежных деталей устанавливаются ГОСТ 14140-81. Стандарт устанавливает ряд чисел (в соответствии с рядом RalO), из которого выбирают пре­дельные величины смещения Δ осей отверстий от номинального положе­ния, а затем согласно формуле Т=2Д, пересчитывают их в позиционный допуск оси в диаметральном выражении Т, как указано в верхнем ряду чисел в табл.36. В этой таблице приведены величины, соответствующие рядам зависимых допусков расположения осей, предельные отклонения для шести типовых случаев расположения осей отверстий в системе пря­моугольных координат. Данная таблица составлена на основании данных ОСТ 14140-81 для применяемой обычно системы прямоугольных коорди­нат и для часто встречающихся в примерах и задачах значений Т - пози­ционных допусков осей отверстий.

Таблица 36

Предельные отклонения размеров, координирующих оси отверстий. Система прямоугольных координат (по ГОСТ 14140-81)

Характеристика расположения Эскиз Позиционный допуск оси в диаметральном выражении Т, мм
0,2 0,25 0,3 0,4 0,5 0,6 0,8 1 1,2 1,6 2
Одно отверстие, координированное относительно плоскости (при сборке базовые плоскости соединяемых деталей совмещаются) Предельные отклонения размера между осью отверстия и плоскостью 0,10 0,12 0,16 0,20 0,25 0,30 0,40 0,50 0,60 0,80 1,0

Продолжение табл.36

Два отверстия, координированные друг относительно друга Предельные отклонения размера между осями двух отверстий 0,20 0,25 0,30 0,40 0,50 0,60 0,80 1,0 1,2 1,6 2,0
Несколько отверстий, расположенных в один ряд Предельные отклонения размера между осями двух любых отверстий 0,14 0,16 0,22 0,28 0,35 0,40 0,55 0,70 0,80 1,1 1,4
Предельные отклонения осей отверстий от обшей плоскости 0,07 0,08 0,11 0,14 0,18 0,20 0,28 0,35 0,40 0,55 0,70
Характеристика расположения Эскиз Нормируемые отклонения размеров, координирующих оси отверстий Предельное смещение оси от номинального расположения (и), мм
0,10 0,12 0,16 0,20 0,24 0,30 0,40 0,50 0,60 0,80 1,00
Предельные отклонения размеров, координирующих оси отверстий (±), мм
Три или четыре отверстия, расположенные в два ряда 0,14 0,16 0,22 0,28 0,35 0,40 0,55 0,70 0,80 1,1 1,4
0,20 0,25 0,30 0,40 0,50 0,60 0,80 1,0 1,2 1,6 2,0
Одно отверстие, координированное относительно двух взаимно перпендикулярных плоскостей (при сборке базовые плоскости соединяемых деталей совмещаются) Предельные отклонения размеров L 1 и L 2 0,07 0,08 0,11 0,14 0,18 0,20 0,28 0,35 0,40 0,55 0,70
Отверстия, координированные друг относительно друга и расположенные в несколько рядов Предельные отклонения размеров L 1 ; L 2 ; L 3 ; L 4 0,07 0,08 0,11 0,14 0,18 0,20 0,28 0,35 0,40 0,55 0,70
Предельные отклонения размеров по диагонали между осями двух любых отверстий 0,20 0,25 0,30 0,40 0,50 0,60 0,80 1,0 1,2 1,6 2,0

Примечание: Если вместо отклонения размера между осями двух любых отверстий нормируются или контролируются отклонения размеров от каждого отверстия до одного базового отверстия или базовой плоскости (т.е. размеров L 1 ; L 2 и т. д.), то величина предельного отклонения должна быть уменьшена вдвое.



Рассмотрим примеры использования этой таблицы.

Пример. Две детали скрепляются пятью болтами, расположенными в один ряд. Номинальные размеры межосевых расстояний равны 50 мм. Наименьшие размеры диаметров отверстий под болты равны 20,5 мм. Наибольшие наружные диаметры болтов равны 20 мм. Рассмотрим три варианта (а, б, в) простановки размеров на чертеже, приведен­ных на рис.74.

Решение:

а) дано соединение типа А, в котором болты проходят с зазором через отверстия в первой и второй соединяемых деталях. Позиционное отклонение для соединения типа А равно Δ=0,5·S min . Если для компенсации смещения используется весь наименьший зазор, в рассматриваемом примере:

S min =20,5-20=0,5 (мм).

Позиционный допуск осей отверстий данного соединения можно определить по формуле:

T=k·S min

при k=1 для соединения, не требующего регулировки Т=1·0,5=0,5 (мм).

По табл.36 находим, что Е=0,5 мм - величина, входящая в стандартный ряд, и поэтому не требует округления.

Способ простановки позиционного допуска осей на чертеже показан на рис.74, а. В рамках указаны только номинальные размеры межосевых расстояний. Допуск расположения, указанный условным знаком, его величина и символ (буква М), обозначающий, что он зависимый, вписаны в рамку допуска, разделенную на три части;

б) при нормировании допуска межосевых расстояний, согласно рисунку, на котором расположение отверстий аналогично рассматривае­мому примеру, находим, что предельное отклонение размера между ося­ми двух любых отверстий равно +0,35 мм, а предельное отклонение осей отверстий от общей плоскости ±0,18 мм.

Рис.74. Схемы простановки межосевых размеров

При указанной простановке межосевых размеров, как показано на рис.74, б, их можно рассматривать как звенья размерной цепи, в которой замыкающим размером является размер 200 мм с предельными отклонениями ±0,35 мм и допуском, равным Т=0,70 мм. Таким образом, нахождение допусков (предельных отклонений) четырех межосевых расстояний сводится к решению прямой задачи пятизвенной размерной цепи, в которой известны номинальные размеры звеньев и допуск замыкающего звена. Задача решается методом равных допусков, поскольку все составляющие звенья равны 50 мм.

Допуск каждого из межосевых размеров (звена размерной цепи) равен 0,70/4=0,175 мм, а допустимые отклонения приближенно равны ±0,09 мм.

Соответствующая простановка размеров (цепочкой) показана на рис.74, б. Размер 200 мм отмечен знаком - звездочкой (*), так как его погрешность зависит от действительных погрешностей межосевых расстояний 50 мм;

в) в том случае, когда отклонения на размеры, координирующие центры отверстий, требуется назначать относительно базы (в данном примере базой может быть ось первого отверстия или торец детали), расчет следует вести, исходя из того, что межосевые расстояния являются замыкающими размерами в трехзвенных размерных цепях. Например, в цепи, состоящей из размеров 50, 100 и 50 мм, или в цепи, состоящей из размеров 100, 150, 50 мм, и т.д.

Величины допустимых отклонений расстояния между центрами каждой пары отверстий взяты из табл. 36 и равны ±0,35 мм. Поскольку их допуски замыкающих межосевых расстояний равны 0,70 мм, а допуски размеров 50, 100, 150, 200 мм равны 0,70/2=0,35 мм, то есть допустимые отклонения этих размеров равны ±0,18 мм.

Соответствующая простановка межосевых размеров на чертеже (простановка лесенкой) показана на рис.74, в.

Анализируя точность простановки межосевых размеров на рис.74, можно убедиться, что при простановке размеров от одной базы допуски на размеры, координирующие центры отверстий, могут быть вдвое больше, чем при простановке последовательных межосевых размеров.

ЗАКЛЮЧЕНИЕ

В представленном материале рассмотрено несколько важных во­просов взаимозаменяемости, которые являются основополагающими при изучении дисциплины «Метрология, стандартизация и сертификация»:

Система ЕСДП для гладких цилиндрических сопряжении, являющаяся единой для всех отраслей машиностроения;

Нормирование точности типовых соединений;

Размерный анализ;

Расчет гладких предельных калибров,

Эти вопросы являются неотъемлемой частью практической деятельности конструкторов и технологов.

Изданный материал является учебным пособием и его ни в коем случае нельзя рассматривать как учебник, содержащий исчерпывающие сведения по вышеприведенным разделам взаимозаменяемости. Об этом свидетельствует и особенность изложения материала - в форме вопросов и ответов, понятий и определений. Небольшие выдержки из таблиц стандартов объясняют специфику их построения. Многие иллюстрации по ходу глав и конкретные числовые примеры позволяют студентам проверить свое умение пользоваться справочными таблицами.

Важным моментом, связанным с изданием этого пособия, является отсутствие в библиотеках университета достаточного количества справочников и нормативных документов, необходимых студентам конструкторского и технологического факультетов при выполнении курсовой работы, предусмотренной учебными планами поданной дисциплине, а

также курсовых и дипломных проектов.

В учебном пособии методика расчетов, связанных с размерным анализом, предусматривает их выполнение «вручную», так как выполнение этой работы на ЭВМ требует специального обучения. В пособие не включены вопросы, связанные со взаимозаменяемостью угловых и конических соединений, зубчатых колес и передач. В связи с особенностями этих соединений их взаимозаменяемость, допуски и посадки должны рас сматриваться с методами и средствами их измерений и контроля, а это возможно при издании нового пособия.

ОГЛАВЛЕНИЕ
ПРЕДИСЛОВИЕ.......................................................................................................................
1. ВЗАИМОЗАМЕНЯЕМОСТЬ И ЕЕ ВИДЫ........................................................................
2. ПОНЯТИЕ 0 РАЗМЕРАХ, ДОПУСКАХ И ОТКЛОНЕНИЯХ........................................
3. ДОПУСК РАЗМЕРА. ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ДОПУСКОВ.......................
4. ПОНЯТИЕ 0 ПОСАДКАХ. ТИПЫ ПОСАДОК................................................................
5. ПРИНЦИПЫ ПОСТРОЕНИЯ ПОСАДОК. ПОСАДКИ В СИСТЕМЕ ОТВЕРСТИЯ И ВАЛА.....................................................................................................................................
6. ЕДИНАЯ СИСТЕМА ДОПУСКОВ И ПОСАДОК (ЕСДП), ЕЕ СТРУКТУРА.............................................................................................................................
7. ПОСАДКИ В СИСТЕМЕ ЕСДП ДЛЯ ГЛАДКИХ ЦИЛИНДРИЧЕСКИХ СОЕДИНЕНИЙ…………………............................................................................................
ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ.....................................................................................
8. ТОЧНОСТЬ ФОРМЫ ДЕТАЛЕЙ......................................................................................
9. ВЗАИМОЗАМЕНЯЕМОСТЬ ШТИФТОВЫХ СОЕДИНЕНИЙ ……………………….
9.1. НАЗНАЧЕНИЕ И ВИДЫ ШТИФТОВЫХ СОЕДИНЕНИЙ.........................................
9.2. ФОРМЫ ШТИФТОВ........................................................................................................
9.3. УСТАНОВКА ШТИФТОВ...............................................................................................
10. ВЗАИМОЗАМЕНЯЕМОСТЬ ШПОНОЧНЫХ СОЕДИНЕНИЙ...................................
10.1. ШПОНОЧНЫЕ СОЕДИНЕНИЯ...................................................................................
10.2. ДОПУСКИ И ПОСАДКИ ШПОНОЧНЫХ СОЕДИНЕНИЙ......................................
10.3. ДОПУСКИ И ПОСАДКИ ВАЛА С ОТВЕРСТИЕМ...................................................
11. ВЗАИМОЗАМЕНЯЕМОСТЬ ШЛИЦЕВЫХ СОЕДИНЕНИЙ......................................
11.1. ОБЩИЕ СВЕДЕНИЯ......................................................................................................
11.2. СИСТЕМА ДОПУСКОВ И ПОСАДОК ШЛИЦЕВОГО СОЕДИНЕНИЯ…………
11.3. ОБОЗНАЧЕНИЕ НА ЧЕРТЕЖАХ ШЛИЦЕВЫХ СОЕДИНЕНИЙ И ШЛИЦЕВЫХ ДЕТАЛЕЙ........................................................................................................
12. ДОПУСКИ И ПОСАДКИ ПОДШИПНИКОВ КАЧЕНИЯ............................................
12.1. ОБЩИЕ СВЕДЕНИЯ.....................................................................................................
12.2. ДОПУСКИ И ПОСАДКИ ПОДШИПНИКОВ КАЧЕНИЯ ПО ПРИСОЕДИНИТЕЛЬНЫМ РАЗМЕРАМ..............................................................................
12.3. ВЫБОР ПОСАДОК ПОДШИПНИКОВ КАЧЕНИЯ....................................................
12.4. ОБОЗНАЧЕНИЕ ПОДШИПНИКОВЫХ ПОСАДОК НА ЧЕРТЕЖАХ....................
13. ВЗАИМОЗАМЕНЯЕМОСТЬ ДЕТАЛЕЙ РЕЗЬБОВЫХ СОЕДИНЕНИЙ....................
13.1. ОБЩИЕ ПОЛОЖЕНИЯ.................................................................................................
13.2. МЕТРИЧЕСКАЯ РЕЗЬБА И ЕЕ ПАРАМЕТРЫ..........................................................
13.3. ОБЩИЕ ПРИНЦИПЫ ОБЕСПЕЧЕНИЯ ВЗАИМОЗАМЕНЯЕМОСТИ ЦИЛИНДРИЧЕСКИХ РЕЗЬБ.................................................................................................
13.4. ОСОБЕННОСТИ ДОПУСКОВ И ПОСАДОК МЕТРИЧЕСКИХ РЕЗЬБ…………..
14 ШЕРОХОВАТОСТЬ И ВОЛНИСТОСТЬ ПОВЕРХНОСТЕЙ.......................................
14.1. ОБЩИЕ ПОЛОЖЕНИЯ.................................................................................................
14.2. НОРМИРОВАНИЕ ШЕРОХОВАТОСТИ ПОВЕРХНОСТЕЙ...................................
14.3. ВЫБОР ПАРАМЕТРОВ ШЕРОХОВАТОСТИ............................................................
14.4. ОБОЗНАЧЕНИЕ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ..........................................
14.5. ВОЛНИСТОСТЬ ПОВЕРХНОСТИ И ПАРАМЕТРЫ ДЛЯ ЕЕ НОРМИРОВАНИЯ..................................................................................................................
15. ГЛАДКИЕ КАЛИБРЫ И ИХ ДОПУСКИ........................................................................
15.1. КЛАССИФИКАЦИЯ ГЛАДКИХ КАЛИБРОВ............................................................
15.2. ДОПУСКИ ГЛАДКИХ КАЛИБРОВ.............................................................................
16. ВЫБОР УНИВЕРСАЛЬНЫХ СРЕДСТВ ИЗМЕРЕНИЙ ДЛЯ ОЦЕНКИ ЛИНЕЙНЫХ РАЗМЕРОВ.......................................................................................................
16.1. ОБЩИЕ СВЕДЕНИЯ......................................................................................................
16.2. ПРЕДЕЛЬНАЯ ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ И ЕЕ СОСТАВЛЯЮЩИЕ...........
17. ВЗАИМОЗАМЕНЯЕМОСТЬ ПО РАЗМЕРАМ, ВХОДЯЩИМ В РАЗМЕРНЫЕ ЦЕПИ.........................................................................................................................................
17.1. ОСНОВНЫЕ ПОНЯТИЯ, ТЕРМИНЫ, ОПРЕДЕЛЕНИЯ И ОБОЗНАЧЕНИЯ ……
17.2. РАСЧЕТЫ ДОПУСКОВ РАЗМЕРОВ, ВХОДЯЩИХ В РАЗМЕРНЫЕ ЦЕПИ.........................................................................................................................................
18. РАСЧЕТ РАЗМЕРНЫХ ЦЕПЕЙ, ОПРЕДЕЛЯЮЩИХ ДОПУСКИ НА РАССТОЯНИЯ МЕЖДУ ОТВЕРСТИЯМИ..........................................................................
18.1. ОБЩИЕ ПОЛОЖЕНИЯ..................................................................................................
18.2. ДОПУСКИ РАСПОЛОЖЕНИЯ ОСЕЙ ОТВЕРСТИЙ ДЛЯ КРЕПЕЖНЫХ ДЕТАЛЕЙ..................................................................................................................................
18.3. РАСЧЕТ ЗАВИСИМЫХ ДОПУСКОВ РАЗМЕРОВ, ОПРЕДЕЛЯЮЩИХ РАСПОЛОЖЕНИЕ ОСЕЙ ОТВЕРСТИЙ..............................................................................
ЗАКЛЮЧЕНИЕ.........................................................................................................................

Сергей Петрович Шатило

Николай Николаевич Прохоров

Владислав Валикович Чорный

Сергей Витальевич Кучеров

Галина Федоровна Бабюк



 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з