Технология обработки конических поверхностей. Коническая и цилиндрическая поверхности Цилиндрических конических фасонных поверхностей как


К атегория:

Токарное дело

Обработка наружных и внутренних конических поверхностей

Если вращать прямоугольный треугольник АБВ вокруг катета АБ, то образующееся тело называют полным конусом, катет АБ - высотой конуса. Прямую АВ называют образующей конуса, а точку А - его вершиной. При вращении катета БВ вокруг оси АБ образуется поверхность, называемая основанием конуса. Угол между образующей АГ и осью АБ - есть угол а уклона конуса. Угол ВАГ между образующими АВ и АГ конуса называют углом конуса; он равен 2а. Если от полного конуса отсечь его верхнюю часть плоскостью, параллельной основанию, то полученное тело будет усеченным конусом (рис. 206,6), который имеет два основания - верхнее и нижнее. Расстояние 001 между основаниями - высота усеченного конуса. На чертеже обычно указывают три основных размера конуса (рис. 206, в): больший диаметр D, меньший диаметр d и высоту конуса.

Рис. 198. Применение сверл для Г обработни отверстий

Рис. 199. Приспособления для крепления сверл

Пользуясь формулой tga = =(D- d)/(2l), можно определить угол а наклона конуса, который на токарном станке устанавливают поворотом верхнего суппорта или смещением задней бабки. Иногда конусность задают так: K = (D - d)/l, т. е. конусность есть отношение разности диаметров к длине. На рис. 206, г показан конус, у которого К = = (100 -90)/100= 1/10, т. е. на длине 10 мм диаметр конуса уменьшается на 1 мм. Конусность и диаметр конуса связаны уравнением d = = D - Kl, откуда D = d + Kl.

Если взять отношение полуразности диаметров конуса к его длине, то получим величину, называемую уклоном конуса M = (D - d)/(2l) (рис. 206, д). Уклон конуса и конусность обычно выражают отношениями 1:10, 1:50 или 0,1:0,05 и т. д. На практике используют формулу

Рис. 200. Сверление глухих и глубоних снвозных отверстий

Рис. 201. Растачивание отверстий

В машиностроении распространены конусы Морзе и метрические конусы. Конус Морзе (рис. 207) имеет семь номеров: 0, 1, 2, 3, 4, 5 и 6. Каждому номеру соответствует определенный угол наклона: наименьший 0, наибольший 6. Углы у всех конусов разные. Метрические конусы имеют конусность 4; 6; 80; 100; 120; 160 и 200; у них угол уклона одинаков (рис. 208).

Обработка конических поверхностей отличается от обработки цилиндрических только углом подачи резца (рис. 209), что достигают настройкой станка. При вращении заготовки вершина резца перемещается под углом а (углом конуса). На токарном станке конусы обрабатывают несколькими способами. Обработка конуса с помощью широкого резца показана на рис. 210, а. При этом высота конуса должна быть не более 20 мм. Кроме того, режущую кромку резца устанавливают под углом а к оси вращения детали точно по высоте центров (рис. 210,6).

Наиболее простым способом для получения конических поверхностей является смещение линии центров. Этот способ применяют только при обработке поверхностей в центрах путем смещения корпуса задней бабки. При смещении корпуса задней бабки на рабочего (в сторону резцедержателя) образуется коническая поверхность, у которой большее основание детали направлено в сторону передней бабки (рис. 211, а). При смещении корпуса задней бабки от рабочего большее основание расположено в сторону задней бабки (рис. 211,6). Поперечное смещение корпуса задней бабки H = L - sina. При небольшом смещении угла наклона конуса а можно считать, что sinaa;tga, тогда H = L(D - d)/(2l). Смещение корпуса задней бабки измеряют линейкой (рис. 211, в), соосность центров также можно проверить линейкой (рис. 211, г). Однако при смещении корпуса задней бабки следует учитывать, что смещение допускается не более чем на 1/50 длины детали (рис. 211, д). При большем смещении образуется неполное прилегание центровых отверстий детали и центров, что снижает точность обрабатываемой поверхности.

Рис. 203. Индикаторный нутромер для измерения глубины отверстий: 1 -центрирующий мостин; 2-измерительный наконечник; 3-двух-ллечий рычаг; 4-регулируемый упор; 5-пружина, устраняющая зазор в передаточных элементах; 6-измерительный стержень индикатора

Рис. 204. Цельные и насадные зеннеры

Рис. 205. Развертни

Конусы с большим углом а и малой высотой целесообразно обрабатывать путем поворота верхнего суппорта. Этот способ используют при обработке наружного (рис. 212, а) и внутреннего (рис. 212,6) конуса. В этом случае ручную подачу осуществляют путем поворота рукоятки верхнего суппорта. Для поворота верхнего суппорта на требуемый угол при механической подаче используют деления, нанесенные на фланце поворотной части суппорта. Если угол а не задан на чертеже, его подсчитывают по формуле tga = (D - d)/(2l). Резец устанавливают строго по центру. Отклонение от прямолинейности образующей обрабатываемого конуса возникает при установке резца выше (рис. 213,6) или ниже (рис. 213,в) линии центра.

Для получения конических поверхностей с а^ 10…12° .применяют копировальную линейку (рис. 214). На плите 1 установлена линейка 2, которую поворачивают под требуемый угол а вокруг пальца 3 и закрепляют винтом 6. Ползун 4 жестко соединен с поперечной частью суппорта 8 с помощью тяги 7 и зажима 5. Копировальная линейка должна быть установлена параллельно образующей конуса, который необходимо получить. Угол поворота копировальной линейки определяют из выражения tga = (Z) - d)/(2l). Если деления на плите обозначены в миллиметрах, то число делений C - H(D - d)/(2l), где Я - расстояние от оси вращения линейки до ее конца.

Конус, у которого длина образующей больше длины хода верхней каретки суппорта, обтачивают путем применения продольной и поперечной подач (рис. 215). При этом верхнюю каретку необходимо повернуть на угол р относительно линии центров: sinp = tga(Snp/S„+ 1), где оПр и S„ - продольная и поперечная подачи. Для получения конусности требуемой формы резец устанавливают строго по центру.

Коническое отверстие обрабатывают в следующей последовательности. Сверлят отверстие несколько меньшего диаметра, чем диаметр меньшего основания конуса (рис. 216), затем рассверливают отверстие сверлом. После этого ступенчатое отверстие растачивают резцом. Другим способом получения конического отверстия является сверление отверстия (рис. 217, а), развертывание черновое (рис. 217,6), получистовое (рис. 217, в), чистовое (рис. 217,г).

Рис. 206. Геометричесние параметры нонуса

Конические поверхности контролируют угломерами (рис. 218, а), калибрами (рис. 218, б, в) и шаблонами (рис. 218, г). Конические отверстия проверяют по уступам и рискам, нанесенным на калибрах (рис. 219). Если конец конусного отверстия детали совпадает с левым торцом уступа, а наружный диаметр совпадает с одной из рисок или же находится между ними, то размеры конуса соответствуют заданным.

Рис. 207. Конус Морзе

Рис. 208. Метричесний нонус

Рис. 209. Схема обработки цилиндрической и нонической поверхностей: а-вершина резца перемещается параллельно оси центров; б-вершина резца перемещается под углом н оси центров


К коническим относятся поверхности, образованные перемещением прямолинейной образующей l по криволинейной направляющей т. Особенностью образования конической поверхности является то, что

Рис. 95

Рис. 96

при этом одна точка образующей всегда неподвижна. Эта точка является вершиной конической поверхности (рис. 95, а). Определитель конической поверхности включает вершину S и направляющую т, при этом l "~S; l "^ т.

К цилиндрическим относятся поверхности, образованные прямой образующей /, перемещающейся по криволинейной направляющей т параллельно заданному направлению S (рис. 95, б). Цилиндрическую поверхность можно рассматривать как частный случай конической поверхности с бесконечно удаленной вершиной S.

Определитель цилиндрической поверхности состоит из направляющей т и направления S, образующих l , при этом l" || S; l" ^ т.

Если образующие цилиндрической поверхности перпендикулярны плоскости проекций, то такую поверхность называют проецирующей. На рис. 95, в показана горизонтально проецирующая цилиндрическая поверхность.

На цилиндрической и конической поверхностях заданные точки строят с помощью образующих, проходящих через них. Линии на поверхностях, например линия а на рис. 95, в или горизонтали h на рис. 95, а, б, строятся с помощью отдельных точек, принадлежащих этим линиям.

Поверхности вращения

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i.

Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П 1 . В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рис. 103 точка М построена на параллели h 4 .

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой - оси i (рис. 104, а). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рис. 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рис. 104, в). Точка A на поверхности сферы принадлежит главному

Рис. 103

Рис. 104

меридиану f, точка В - экватору h, а точка М построена на вспомогательной параллели h".

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рис. 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рис. 105, б). Открытый тор называется еще кольцом.

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рис. 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рис. 106, б) - вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рис. 106, в) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рис. 106, г) - вращением гиперболы вокруг действительной оси.

В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см. рис. 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см. рис. 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет - цилиндр будет наклонным.

Рис. 105

Рис. 106

Чтобы получить круговой конус (см. рис. 104, а), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения - конус будет прямой, если нет - наклонный. Если обе плоскости обреза не проходят через вершину - конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину - пирамида усеченная.

Призму (см. рис. 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна - наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Вопрос 22

Параболо́ид ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка.

Канонические уравнения параболоида в декартовых координатах:

2z=x 2 /p+y 2 /q

Если p и q одного знака, то параболоид называется эллиптическим.

если разного знака, то параболоид называется гиперболическим.

если один из коэффициентов равен нулю, то параболоид называется параболическим цилиндром.

Эллиптический параболойд

2z=x 2 /p+y 2 /q

Эллиптический параболойд если p=q

2z=x 2 /p+y 2 /q

Гиперболический параболойд

2z=x 2 /p-y 2 /q


Параболический цилиндр 2z=x 2 /p(или 2z=y 2 /q)

Вопрос23

Вещественное линейное пространство называется Эвклидовым , если в нем определена операция скалярного умножения : любым двум векторам x и y сопоставлено вещественное число (обозначаемое (x,y) ), и это соответственно удовлетворяет следующим условиям, каковы бы ни были векторы x,y и z и число C:

2. (x+y , z)=(x , z)+(y , z)

3. (Cx , y)= C(x, y)

4. (x, x)>0 , если x≠0

Простейшие следствия из вышеуказанных аксиом:

1. (x, Cy)=(Cy, x)=C(y, x) следовательно всегда (X, Cy)=C(x, y)

2. (x, y+z)=(x, y)+ (x, z)

3. ()= (x i , y)

()= (x , y k)

Обработка центровых отверстий. Контроль конических поверхностей

Обработка центровых отверстий . В деталях типа валов часто приходится выполнять центровые отверстия, которые используются для последующей обработки детали и для восстановления ее в процессе эксплуатации. Поэтому центровку выполняют особенно тщательно. Центровые отверстия вала должны находиться на одной оси и иметь одинаковые размеры на обоих торцах независимо от диаметров концевых шеек вала. При невыполнении этих требований снижается точность обработки и увеличивается износ центров и центровых отверстий. Конструкции центровых отверстий приведены на рисунке 40, их размеры - в таблице ниже. Наибольшее распространение имеют центровые отверстия с углом конуса 60 градусов. Иногда в тяжелых валах этот угол увеличивают до 75 или до 90 градусов. Для того чтобы вершина центра не упиралась в заготовку, в центровых отверстиях выполняют цилиндрические углубления диаметром d. Для защиты от повреждений центровые отверстия многократного использования выполняют с предохранительной фаской под углом 120 градусов (рисунок 40 б).

Рис. 40. Центровые отверстия

Диаметр заготовки Наименьший диаметр концевой шейки вала Dо, мм Номинальный диаметр центрового отверстия d D не более l не менее a
Свыше 6 до 10 6,5 1,5 1,8 0,6
Свыше 10 до 18 2,0 2,4 0,8
Свыше 18 до 30 2,5 0,8
Свыше 30 до 50 7,5 3,6 1,0
Свыше 50 до 80 4,8 1,2
Свыше 80 до 120 12,5 1,5

На рисунке 41 показано, как изнашивается задний центр станка при неправильно выполненном центровом отверстии в заготовке. При несоосности (а) центровых отверстии и несоосности (b) центров деталь при обработке базируется с перекосом, что вызывает значительные погрешности формы наружной поверхности детали. Центровые отверстия в небольших заготовках обрабатывают различными методами. Заготовку закрепляют в самоцентрирующем патроне, а в пиноль задней бабки вставляют сверлильный патрон с центровочным инструментом.

Рис. 41. Износ заднего центра станка

Центровые отверстия диаметром 1,5-5 мм обрабатывают комбинированными центровыми сверлами без предохранительной фаски (рисунок 42г) и с предохранительной фаской (рисунок справа 41д).

Центровые отверстия больших размеров обрабатывают сначала цилиндрическим сверлом (рисунок справа 41а), а затем однозубой (рисунок 41б) или многозубой (рисунок 41в) зенковкой. Центровые отверстия обрабатывают при вращающейся заготовке; подачу центровочного инструмента осуществляют вручную (от маховика задней бабки). Торец, в котором обрабатывают центровое отверстие, предварительно подрезается резцом. Необходимый размер центрового отверстия определяют по углублению центровочного инструмента, пользуясь лимбом маховика задней бабки или шкалой пиноли. Для обеспечения соосности центровых отверстий деталь предварительно размечают, а при зацентровке поддерживают люнетом.

Рис. 41. Сверла для образования центровых отверстий

Центровые отверстия размечают с помощью разметочного угольника (рисунок 42а). Штифты 1 и 2 расположены на равном расстоянии от кромки АА угольника. Наложив угольник на торец и прижав штифты к шейке вала, вдоль кромки АА проводят риску на торце вала, а затем, повернув угольник на 60-90 градусов, проводят следующую риску и т. д. Пересечение нескольких рисок определит положение центрового отверстия на торце вала. Для разметки можно также использовать угольник, показанный на рисунке 42б. После разметки производят накернивание центрового отверстия. Если диаметр шейки вала не превышает 40 мм, то можно производить накернивание центрового отверстия без предварительной разметки с помощью приспособления, показанного на рисунке 42в. Корпус 1 приспособления устанавливают левой рукой на торце вала 3 и ударом молотка по кернеру 2 намечают центр отверстия. Если в процессе работы конические поверхности центровых отверстий были повреждены или неравномерно изношены, то допускается их исправление резцом; при этом верхнюю каретку суппорта поворачивают на угол конуса.

Рис. 42. Разметка центровых отверстий

Контроль конических поверхностей . Конусность наружных конических поверхностей измеряют шаблоном или универсальным угломером. Для более точных измерений применяют калибры-втулки, рисунок г) и д) слева, с помощью которых проверяют не только угол конуса, но и его диаметры. На обработанную поверхность конуса карандашом наносят 2-3 риски, затем на измерительный конус надевают калибр-втулку, слегка нажимая на нее и поворачивая ее вдоль оси. При правильно выполненном конусе все риски стираются, а конец конической детали находится между метками А и Б калибра-втулки. При измерении конических отверстий применяют калибр-пробку. Правильность обработки конического отверстия определяется (как и при измерении наружных конусов) взаимным прилеганием поверхностей детали и калибра-пробки. Если риски, нанесенные карандашом на калибр-пробку, сотрутся у малого диаметра, то угол конуса в детали велик, а если у большого диаметра - угол мал.

В машиностроении, наряду с цилиндрическими, широко применяются детали с коническими поверхностями в виде наружных конусов или в виде конических отверстий. Например, центр токарного станка имеет два наружных конуса, из которых один служит для установки и закрепления его в коническом отверстии шпинделя; наружный конус для установки и закрепления имеют также сверло, зенкер, развертка и т. д. Переходная втулка для закрепления сверл с коническим хвостовиком имеет наружный конус и коническое отверстие

1. Понятие о конусе и его элементах

Элементы конуса . Если вращать прямоугольный треугольник АБВ вокруг катета АБ (рис. 202, а), то образуется тело АВГ, называемое полным конусом . Линия АБ называется осью или высотой конуса , линия АВ - образующей конуса . Точка А является вершиной конуса .

При вращении катета БВ вокруг оси АБ образуется поверхность круга, называемая основанием конуса .

Угол ВАГ между боковыми сторонами АВ и АГ называется углом конуса и обозначается 2α. Половина этого угла, образуемая боковой стороной АГ и осью АБ, называется углом уклона конуса и обозначается α. Углы выражаются в градусах, минутах и секундах.

Если от полного конуса отрезать его верхнюю часть плоскостью, параллельной егооснованию (рис. 202, б), то получим тело, называемое усеченным конусом . Оно имеет два основания верхнее и нижнее. Расстояние OO 1 по оси между основаниями называется высотой усеченного конуса . Так как в машиностроении большей частью приходится иметь дело с частями конусов, т. е. усеченными конусами, то обычно их просто называют конусами; дальше будем называть все конические поверхности конусами.

Связь между элементами конуса. На чертеже указывают обычно три основных размера конуса: больший диаметр D, меньший - d и высоту конуса l (рис. 203).

Иногда на чертеже указывается только один из диаметров конуса, например, больший D, высота конуса l и так называемая конусность. Конусностью называется отношение разности диаметров конуса к его длине. Обозначим конусность буквой K, тогда

Если конус имеет размеры: D =80 мм, d = 70 мм и l = 100 мм, то согласно формуле (10):

Это значит, что на длине 10 мм диаметр конуса уменьшается на 1 мм или на каждый миллиметр длины конуса разница между его диаметрами изменяется на

Иногда на чертеже вместо угла конуса указывается уклон конуса . Уклон конуса показывает, в какой мере отклоняется образующая конуса от его оси.
Уклон конуса определяется по формуле

где tg α - уклон конуса;


l - высота конуса в мм.

Пользуясь формулой (11), можно при помощи тригонометрических таблиц определить угол а уклона конуса.

Пример 6. Дано D = 80 мм; d=70мм; l= 100 мм. По формуле (11) имеем По таблице тангенсов находим величину, наиболее близкую к tg α = 0,05, т. е. tg α = 0,049, которому соответствует угол уклона конуса α = 2°50". Следовательно, угол конуса 2α = 2·2°50" = 5°40".

Уклон конуса и конусность обычно выражают простой дробью, например: 1: 10; 1: 50, или десятичной дробью, например, 0,1; 0,05; 0,02 и т. д.

2. Способы получения конических поверхностей на токарном станке

На токарном станке обработка конических поверхностей производится одним из следующих способов:
а) поворотом верхней части суппорта;
б) поперечным смещением корпуса задней бабки;
в) с помощью конусной линейки;
г) с помощью широкого резца.

3. Обработка конических поверхностей поворотом верхней части суппорта

При изготовлении на токарном станке коротких наружных и внутренних конических поверхностей с большим углом уклона нужно повернуть верхнюю часть суппорта относительно оси станка под углом α уклона конуса (см. рис. 204). При таком способе работы подачу можно производить только от руки, вращая рукоятку ходового винта верхней части суппорта, и лишь в наиболее современных токарных станках имеется механическая подача верхней части суппорта.

Для установки верхней части суппорта 1 на требуемый угол можно использовать деления, нанесенные на фланце 2 поворотной части суппорта (рис. 204). Если угол α уклона конуса задан по чертежу, то верхнюю часть суппорта повертывают вместе с его поворотной частью на требуемое число делений, обозначающих градусы. Число делений отсчитывают относительно риски, нанесенной на нижней части суппорта.

Если на чертеже угол α не дан, а указаны больший и меньший диаметры конуса и длина его конической части, то величину угла поворота суппорта определяют по формуле (11)

Пример 7. Даны диаметры конуса D = 80 мм, d = 66 мм, длина конуса l = 112 мм. Имеем: По таблице тангенсов находим приближенно: а = 3°35". Следовательно, верхнюю часть суппорта необходимо повернуть на 3°35".

Способ обтачивания конических поверхностей поворотом верхней части суппорта имеет следующие недостатки: он допускает обычно применение только ручной подачи, что отражается на производительности труда и чистоте обработанной поверхности; позволяет обтачивать сравнительно короткие конические поверхности, ограниченные длиной хода верхней части суппорта.

4. Обработка конических поверхностей способом поперечного смещения корпуса задней бабки

Для получения конической поверхности на токарном станке необходимо при вращении заготовки вершину резца перемещать не параллельно, а под некоторым углом к оси центров. Этот угол должен равняться углу α уклона конуса. Наиболее простой способ получения угла между осью центров и направлением подачи - сместить линию центров, сдвинув задний центр в поперечном направлении. Путем смещения заднего центра в сторону резца (на себя) в результате обтачивания получают конус, у которого большее основание направлено в сторону передней бабки; при смещении заднего центра в противоположную сторону, т. е. от резца (от себя), большее основание конуса окажется со стороны задней бабки (рис. 205).

Смещение корпуса задней бабки определяют по формуле

где S - смещение корпуса задней бабки от оси шпинделя передней бабки в мм;
D - диаметр большого основания конуса в мм;
d - диаметр малого основания конуса в мм;
L - длина всей детали или расстояние между центрами в мм;
l - длина конической части детали в мм.

Пример 8. Определить смещение центра задней бабки для обтачивания усеченного конуса, если D = 100 мм, d = 80 мм, L = 300 мм и l = 200мм. По формуле (12) находим:

Смещение корпуса задней бабки производят, используя деления 1 (рис 206), нанесенные на торце опорной плиты, и риску 2 на торце корпуса задней бабки.

Если на торце плиты делений нет, то смещают корпус задней бабки, пользуясь измерительной линейкой, как показано на рис. 207.

Преимущество обработки конических поверхностей путем смещения корпуса задней бабки заключается в том, что этим способом можно обтачивать конусы большой длины и вести обтачивание с механической подачей.

Недостатки этого способа: невозможность растачивать конические отверстия; потеря времени на перестановку задней бабки; возможность обрабатывать лишь пологие конусы; перекос центров в центровых отверстиях, что приводит к быстрому и неравномерному износу центров и центровых отверстий и служит причиной брака при вторичной установке детали в этих же центровых отверстиях.

Неравномерного износа центровых отверстий можно избежать, если вместо обычного применять специальный шаровой центр (рис. 208). Такие центры используют преимущественно при обработке точных конусов.

5. Обработка конических поверхностей с применением конусной линейки

Для обработки конических поверхностей с углом уклона а до 10-12° современные токарные станки обычно имеют особое приспособление, называемое конусной линейкой. Схема обработки конуса с применением конусной линейки приводится на рис. 209.


К станине станка прикреплена плита 11, на которой установлена конусная линейка 9. Линейку можно поворачивать вокруг пальца 8 под требуемым углом а к оси обрабатываемой детали. Для закрепления линейки в требуемом положении служат два болта 4 и 10. По линейке свободно скользит ползун 7, соединяющийся с нижней поперечной частью 12 суппорта при помощи тяги 5 и зажима 6. Чтобы эта часть суппорта могла свободно скользить по направляющим, ее отсоединяют от каретки 3, вывинчивая поперечный винт или отсоединяя от суппорта его гайку.

Если сообщить каретке продольную подачу, то ползун 7, захватываемый тягой 5, начнет перемещаться вдоль линейки 9. Так как ползун скреплен с поперечными салазками суппорта, то они вместе с резцом будут перемещаться параллельно линейке 9. Благодаря этому резец будет обрабатывать коническую поверхность с углом уклона, равным углу α поворота конусной линейки.

После каждого прохода резец устанавливают на глубину резания с помощью рукоятки 1 верхней части 2 суппорта. Эта часть суппорта должна быть повернута на 90° относительно нормального положения, т. е. так, как это показано на рис. 209.

Если даны диаметры оснований конуса D и d и его длина l, то угол поворота линейки можно найти по формуле (11).

Подсчитав величину tg α, легко определить значение угла α по таблице тангенсов.
Применение конусной линейки имеет ряд преимуществ:
1) наладка линейки удобна и производится быстро;
2) при переходе к обработке конусов не требуется нарушать нормальную наладку станка, т. е. не нужно смещать корпус задней бабки; центры станка остаются в нормальном положении, т. е. на одной оси, благодаря чему центровые отверстия в детали и центры станка не срабатываются;
3) при помощи конусной линейки можно не только обтачивать наружные конические поверхности, но и растачивать конические отверстия;
4) возможна работа е продольным самоходом, что увеличивает производительность труда и улучшает качество обработки.

Недостатком конусной линейки является необходимость отсоединять салазки суппорта от винта поперечной подачи. Этот недостаток устранен в конструкции некоторых токарных станков, у которых винт не связан жестко со своим маховичком и зубчатыми колесами поперечного самохода.

6. Обработка конических поверхностей широким резцом

Обработку конических поверхностей (наружных и внутренних) с небольшой длиной конуса можно производить широким резцом с углом в плане, соответствующим углу α уклона конуса (рис. 210). Подача резца может быть продольная и поперечная.

Однако использование широкого резца на обычных станках возможно только при длине конуса, не превышающей примерно 20 мм. Применять более широкие резцы можно лишь на особо жестких станках и деталях, если это не вызывает вибрации резца и обрабатываемой детали.

7. Растачивание и развертывание конических отверстий

Обработка конических отверстий является одной из наиболее трудных токарных работ; она значительно труднее, чем обработка наружных конусов.


Обработку конических отверстий на токарных станках в большинстве случаев производят растачиванием резцом с поворотом верхней части суппорта и реже с помощью конусной линейки. Все подсчеты, связанные с поворотом верхней части суппорта или конусной линейки, выполняются так же, как при обтачивании наружных конических поверхностей.

Если отверстие должно быть в сплошном материале, то сначала сверлят цилиндрическое отверстие, которое затем растачивают резцом на конус или обрабатывают коническими зенкерами и развертками.

Чтобы ускорить растачивание или развертывание, следует предварительно просверлить отверстие сверлом, диаметр d, которого на 1-2 мм меньше диаметра малого основания конуса (рис. 211, а). После этого рассверливают отверстие одним (рис. 211, б) или двумя (рис. 211, в) сверлами для получения ступеней.

После чистового растачивания конуса его развертывают конической разверткой соответствующей конусности. Для конусов с небольшой конусностью выгоднее производить обработку конических отверстий непосредственно после сверления набором специальных разверток, как показано на рис. 212.

8. Режимы резания при обработке отверстий коническими развертками

Конические развертки работают в более тяжелых условиях, чем цилиндрические: в то время как цилиндрические развертки снимают незначительный припуск небольшими режущими кромками, конические развертки режут всей длиной их режущих кромок, расположенных на образующей конуса. Поэтому при работе коническими развертками применяют подачи и скорости резания меньше, чем при работе цилиндрическими развертками.

При обработке отверстий коническими развертками подачу производят вручную, вращая маховичок задней бабки. Необходимо следить за тем, чтобы пиноль задней бабки перемещалась равномерно.

Подачи при развертывании стали 0,1-0,2 мм/об, при развертывании чугуна 0,2-0,4 мм/об.

Скорость резания при развертывании конических отверстий развертками из быстрорежущей стали 6-10 м/мин.

Для облегчения работы конических разверток и получения чистой и гладкой поверхности следует применять охлаждение. При обработке стали и чугуна применяют эмульсию или сульфофрезол.

9. Измерение конических поверхностей

Поверхности конусов проверяют шаблонами и калибрами; измерение и одновременно проверку углов конуса производят угломерами. На рис. 213 показан способ проверки конуса с помощью шаблона.

Наружные и внутренние углы различных деталей можно измерять универсальным угломером (рис. 214). Он состоит из основания 1, На котором на дуге 130 нанесена основная шкала. С основанием 1 жестко скреплена линейка 5. По дуге основания перемещается сектор 4, несущий нониус 3. К сектору 4 посредством державки 7 может быть прикреплен угольник 2, в котором, в свою очередь, закрепляется съемная линейка 5. Угольник 2 и съемная линейка 5 имеют возможность перемещаться по грани сектора 4.

Путем различных комбинаций в установке измерительных деталей угломера можно производить измерение углов от 0 до 320°. Величина отсчета по нониусу 2". Отсчет, полученный при измерении углов, производится по шкале и нониусу (рис. 215) следующим образом: нулевой штрих нониуса показывает число градусов, а штрих нониуса, совпадающий со штрихом шкалы основания, - число минут. На рис. 215 со штрихом шкалы основания совпадает 11-й штрих нониуса, что означает 2"Х 11 = 22". Следовательно, угол в данном случае равен 76°22".

На рис. 216 показаны комбинации измерительных деталей универсального угломера, позволяющие производить измерение различных углов от 0 до 320°.

Для более точной проверки конусов в серийном производстве применяют специальные калибры. На рис. 217, а показан кониче-ский калибр-втулка для проверки наружных конусов, а на рис. 217, б-конический калибр-пробка для проверки конических отверстий.


На калибрах делаются уступы 1 и 2 на торцах или наносятся риски 3, служащие для определения точности проверяемых поверхностей.

На. рис. 218 приводится пример проверки конического отверстия калибром-пробкой.

Для проверки отверстия калибр (см. рис. 218), имеющий уступ 1 на определенном расстоянии от торца 2 и две риски 3, вводят с легким нажимом в отверстие и проверяют, нет ли качания калибра в отверстии. Отсутствие качания показывает, что угол конуса правилен. Убедившись, что угол конуса правилен, приступают к проверке его размера. Для этого наблюдают, до какого места калибр войдет в проверяемую деталь. Если конец конуса детали совпадает с левым торцом уступа 1 или с одной из рисок 3 или находится между рисками, то размеры конуса правильны. Но может случиться, что калибр войдет в деталь настолько глубоко, что обе риски 3 войдут в отверстие или оба торца уступа 1 выйдут из него наружу. Это показывает, что диаметр отверстия больше заданного. Если, наоборот, обе риски окажутся вне отверстия или ни один из торцов уступа не выйдет из него, то диаметр отверстия меньше требуемого.

Для точной проверки конусности применяют следующий способ. На измеряемой поверхности детали или калибра проводят мелом или карандашом две-три линии вдоль образующей конуса, затем вставляют или надевают калибр на деталь и повертывают его на часть оборота. Если линии сотрутся неравномерно, это значит, что конус детали обработан неточно и необходимо его исправить. Стирание линий по концам калибра говорит о неправильной конусности; стирание линий в средней части калибра показывает, что конус имеет небольшую вогнутость, причиной чего обычно является неточное расположение вершины резца по высоте центров. Вместо меловых линий можно нанести на всю коническую поверхность детали или калибра тонкий слой специальной краски (синьки). Такой способ дает большую точность измерения.

10. Брак при обработке конических поверхностей и меры его предупреждения

При обработке конических поверхностей, помимо упомянутых видов брака для цилиндрических поверхностей, дополнительно возможны следующие виды брака:
1) неправильная конусность;
2) отклонения в размерах конуса;
3) отклонения в размерах диаметров оснований при правильной конусности;
4) непрямолинейность образующей конической поверхности.

1. Неправильная конусность получается главным образом вследствие неточного смещения корпуса задней бабки, неточного поворота верхней части суппорта, неправильной установки конусной линейки, неправильной заточки или установки широкого резца. Следовательно, точной установкой корпуса задней бабки, верхней части суппорта или конусной линейки перед началом обработки можно брак предупредить. Этот вид брака исправим только в том случае, если ошибка во всей длине конуса направлена в тело детали, т. е. все диаметры у втулки меньше, а у конического стержня больше требуемых.

2. Неправильный размер конуса при правильном угле его, т. е. неправильная величина диаметров по всей длине конуса, получается, если снято недостаточно или слишком много материала. Предупредить брак можно только внимательной установкой глубины резания по лимбу на чистовых проходах. Брак исправим, если снято недостаточно материала.

3. Может получиться, что при правильной конусности и точных размерах одного конца конуса диаметр второго конца неправилен. Единственной причиной является несоблюдение требуемой длины всего конического участка детали. Брак исправим, если деталь излишне длинна. Чтобы избежать этого вида брака, необходимо перед обработкой конуса тщательно проверить его длину.

4. Непрямолинейность образующей обрабатываемого конуса получается при установке резца выше (рис. 219, б) или ниже (рис. 219, в) центра (на этих рисунках для большей наглядности искажения образующей конуса показаны в сильно преувеличенном виде). Таким образом, и этот вид брака является результатом невнимательной работы токаря.

Контрольные вопросы 1. Какими способами можно обработать конические поверхности на токарных станках?
2. В каких случаях рекомендуется делать поворот верхней части суппорта?
3. Как вычисляется угол поворота верхней части суппорта для обтачивания конуса?
4. Как проверяется правильность поворота верхней части суппорта?
5. Как проверить смещение корпуса задней бабки?.Как вычислить величину смещения?
6. Из каких основных элементов состоит конусная линейка? Как настроить конусную линейку на данную деталь?
7. Установите на универсальном угломере следующие углы: 50°25"; 45°50"; 75°35".
8. Какими инструментами измеряют конические поверхности?
9. Для чего на конических калибрах сделаны уступы или риски и как ими пользоваться?
10. Перечислите виды брака при обработке конических поверхностей. Как их избежать?

Цель работы

1. Знакомство с методами обработки конических поверхностей на токарных станках.

2. Анализ достоинств и недостатков методов.

3. Выбора способа изготовления конической поверхности.

Материалы и оборудование

1. Токарно-винторезный станок модели ТВ-01.

2. Необходимый набор гаечных ключей, режущего инструмента, угломеры, штангенциркуль, заготовки изготавливаемых деталей.

Порядок выполнения работы

1. Прочитайте внимательно основные сведения по теме работы и разберитесь в общих сведениях о конических поверхностях, способах их обработки с учетом основных достоинств и недостатков.

2. С помощью учебного мастера ознакомьтесь со всеми способами обработки конических поверхностей на токарно-винторезном станке.

3. Выполните индивидуальное задание преподавателя по выбору способа изготовления конических поверхностей.

1. Название и цель работы.

2. Схема прямого конуса с указанием основных элементов.

3. Описание основных методов обработки конических поверхностей с приведением схем.

4. Индивидуальное задание с приведением расчетов и обоснования выбора того или иного метода обработки.

Основные положения

В технике часто используются детали с наружными и внутренними коническими поверхностями, например, конические шестерни, ролики конических подшипников. Инструменты для обработки отверстий (сверла, зенкеры, развертки) имеют хвостовики со стандартными конусами Морзе; шпиндели станков имеют конусную расточку под хвостовики инструментов или оправок и т. п.

Обработка деталей с конической поверхностью связана с образованием конуса вращения или усеченного конуса вращения.

Конусом называется тело, образованное всеми отрезками, соединяющими некоторую неподвижную точку с точками окружности в основании конуса.

Неподвижная точка называется вершиной конуса .

Отрезок, соединяющий вершину и любую точку на окружности, называется образующей конуса.

Осью конуса , называется перпендикуляр, соединяющий вершину конуса с основанием, а образующийся отрезок прямой является высотой конуса .

Конус считается прямым или конусом вращения , если ось конуса проходит через центр окружности в его основании.

Плоскость, перпендикулярная оси прямого конуса, отсекает от него меньший конус. Оставшаяся часть называется усеченным конусом вращения .

Усеченный конус характеризуется следующими элементами (рис. 1):

1. D и d – диаметры и большего именьшего оснований конуса;

2. l –высота конуса, расстояние между основаниями конуса;

3. угол конуса 2a – угол между двумя образующими, лежащими в одной плоскости, проходящей через ось конуса;

4. угол уклона конуса a – угол между осью и образующей конуса;

5. уклон У – тангенс угла уклона У = tg a = (D d )/(2l ) , который обозначается десятичной дробью (например: 0,05; 0,02);

6. конусность – определяется по формуле k = (D d )/l , и обозначается с использованием знака деления (например, 1:20; 1:50 и т. д.).

Конусность численно равна удвоенному уклону.

Перед размерным числом, определяющим уклон, наносят знак Ð, острый угол которого направлен в сторону уклона. Перед числом, характеризующим конусность, наносят знак, острый угол которого должен быть направлен в сторону вершины конуса.

В массовом производстве на станках-автоматах для точения конических поверхностей используются копировальные линейки на один неизменный угол наклона конуса, который может изменяться только при переналадке станка с другой копировальной линейкой.

В единичном и мелкосерийном производстве на станках с ЧПУ точение конических поверхностей с любым углом конуса при вершине осуществляется подбором соотношения скоростей продольной и поперечной подачи. На станках, не оснащенных ЧПУ, обработка конических поверхностей может быть произведена четырьмя способами, перечисленными ниже.



 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з