Подвижный и неподвижный блок выигрыш. Блоки как простые механизмы. Одинарные подвижные блоки

4.1. Элементы статики

4.1.7. Некоторые простые механизмы: блоки

Устройства, предназначенные для перемещения (подъема, опускания) грузов с помощью колеса и перекинутой через него нити, к которой приложена некоторая сила, называются блоками . Различают неподвижные и подвижные блоки.

Блоки предназначены для перемещения груза весом P → c помощью силы F → , приложенной к веревке, перекинутой через колесо.

Для любых типов блоков (неподвижных и подвижных) выполняется условие равновесия:

d 1 F = d 2 P ,

где d 1 - плечо силы F → , приложенной к веревке; d 2 - плечо силы P → (веса груза, перемещаемого при помощи данного блока).

В неподвижном блоке (рис. 4.8) плечи сил F → и P → одинаковы и равны радиусу блока:

d 1 = d 2 = R ,

поэтому модули сил равны между собой:

F = P .

Рис. 4.8

С помощью неподвижного блока тело весом P → можно переместить, прикладывая силу F → , величина которой совпадает с величиной веса груза.

В подвижном блоке (рис. 4.9) плечи сил F → и P → различны:

d 1 = 2R и d 2 = R ,

где d 1 - плечо силы F → , приложенной к веревке; d 2 - плечо силы P → (веса груза, перемещаемого при помощи данного блока),

поэтому модули сил подчиняются равенству:

Рис. 4.9

С помощью подвижного блока тело весом P → можно переместить, прикладывая силу F → , величина которой вдвое меньше величины веса груза.

Блоки позволяют переместить тело на некоторое расстояние:

  • неподвижный блок не дает выиг­рыша в силе; он лишь изменяет направление приложенной силы;
  • подвижный блок дает выигрыш в силе в 2 раза.

Однако и подвижный, и неподвижный блоки не дают выигрыша в работе : во сколько раз выигрываем в силе, во столько раз проигрываем в расстоянии («золотое правило» механики).

Пример 22. Система состоит из двух невесомых блоков: одного подвижного и од­ного неподвижного. Груз массой 0,40 кг подвешен к оси подвижного блока и касается пола. К свободному концу веревки, перекинутой через неподвижный блок, прикладывают некоторую силу так, как показано на рисунке. Под действием этой силы груз поднимается из состояния покоя на высоту 4,0 м за 2,0 с. Найти модуль силы, приложенной к веревке.

2 T → ′ + P → = m a → ,

2 T ′ − m g = m a ,

a = 2 F − m g m .

Пройденный грузом путь совпадает с его высотой над поверхностью пола и связан с временем его движения t формулой

или с учетом выражения для модуля ускорения

h = a t 2 2 = (2 F − m g) t 2 2 m .

Выразим отсюда искомую силу:

F = m (h t 2 + g 2)

и рассчитаем ее значение:

F = 0,40 (4,0 (2,0) 2 + 10 2) = 2,4 Н.

Пример 23. Система состоит из двух невесомых блоков: одного подвижного и одного неподвижного. Некоторый груз подвешен к оси неподвижного блока так, как показано на рисунке. Под действием постоянной силы, приложенной к свободному концу веревки, груз начинает двигаться с постоянным ускорением и перемещается вверх на расстояние 3,0 м за 2,0 с. За время движения груза приложенная сила развивает среднюю мощность 12 Вт. Найти массу груза.

Решение . Силы, действующие на подвижный и неподвижный блоки, показаны на рисунке.

На неподвижный блок со стороны веревки действуют две силы T → (по обе стороны от блока); под действием указанных сил поступательное движение блока отсутствует. Каждая из указанных сил равна силе F → , приложенной к концу веревки:

На подвижный блок действуют три силы: две силы натяжения веревки T → ′ (по обе стороны от блока) и вес груза P → = m g → ; под действием указанных сил блок (вместе с подвешенным к нему грузом) движется вверх с ускорением.

Запишем второй закон Ньютона для подвижного блока в виде:

2 T → ′ + P → = m a → ,

или в проекции на координатную ось, направленную вертикально вверх,

2 T ′ − m g = m a ,

где T ′ - модуль силы натяжения веревки; m - масса груза (масса подвижного блока с грузом); g - модуль ускорения свободного падения; a - модуль ускорения блока (груз имеет такое же ускорение, поэтому далее будем говорить об ускорении груза).

Модуль силы натяжения веревки T ′ равен модулю силы T :

поэтому модуль ускорения груза определяется выражением

a = 2 F − m g m .

С другой стороны, ускорение груза определяется формулой для пройденного пути:

где t - время движения груза.

Равенство

2 F − m g m = 2 S t 2

позволяет получить выражение для модуля приложенной силы:

F = m (S t 2 + g 2) .

Груз движется равноускоренно, поэтому модуль его скорости определяется выражением

v = at ,

а средняя скорость движения -

〈 v 〉 = S t = a t 2 .

Величина средней мощности, развиваемой приложенной силой, определяется формулой

〈 N 〉 = F 〈 v 〉 ,

или с учетом выражений для модуля силы и средней скорости:

〈 N 〉 = m a (2 S + g t 2) 4 t .

Отсюда выразим искомую массу:

m = 4 t 〈 N 〉 a (2 S + g t 2) .

Подставим в полученную формулу выражение для ускорения (a = 2S /t 2):

m = 2 t 3 〈 N 〉 S (2 S + g t 2)

и произведем расчет:

m = 2 ⋅ (2,0) 3 ⋅ 12 3,0 (2 ⋅ 3,0 + 10 ⋅ (2,0) 2) ≈ 1,4 кг.

Чаще всего простые механизмы используют, чтобы получить выигрыш в силе. То есть меньшей силой переместить больший по-сравнению с ней вес. При этом выигрыш в силе достигается не «бесплатно». Расплатой за него является потеря в расстоянии, то есть требуется сделать большее перемещение, чем без использования простого механизма. Однако когда силы ограничены, то «обмен» расстояния на силу выгоден.

Подвижный и неподвижный блоки являются одними из видов простых механизмов. Кроме того, они являются видоизмененным рычагом, который также является простым механизмом.

Неподвижный блок не дает выигрыш в силе, он просто изменяет направление ее приложения. Представьте, что вам надо поднять за веревку тяжелый груз вверх. Вам придется тянуть его вверх. Но если использовать неподвижный блок, то тянуть надо будет вниз, в то время как груз будет подниматься вверх. В этом случае вам будет проще, так как необходимая сила будет складываться из силы мышц и вашего веса. Без использования неподвижного блока надо было бы прикладывать такую же силу, но она достигалась бы исключительно за счет силы мышц.

Неподвижный блок представляет собой колесо с желобом для веревки. Колесо закреплено, оно может вращаться вокруг своей оси, но не может перемещаться. Концы веревки (троса) свисают вниз, к одному прикреплен груз, а к другом прикладывается сила. Если тянуть за трос вниз, то груз поднимается вверх.

Так как здесь нет выигрыша в силе, то нет и проигрыша в расстоянии. На какое расстояние поднимется груз, на такое же расстояние надо опустить веревку.

Использование подвижного блока дает выигрыш в силе в два раза (в идеале). Это значит, что если вес груза равен F, то чтобы его поднять, надо приложить силу F/2. Подвижный блок состоит всё из того же колеса с желобом для троса. Однако здесь закреплен один конец троса, а колесо подвижно. Колесо движется вместе с грузом.

Вес груза - это сила, направленная вниз. Его уравновешивают две силы, направленные вверх. Одну создает опора, к которой прикреплен трос, а другую тянущий за трос. Сила натяжения троса одинакова с обоих сторон, значит, между ними поровну распределяется вес груза. Поэтому каждая из сил в 2 раза меньше веса груза.

В реальных ситуациях выигрыш в силе меньше, чем в 2 раза, так как поднимающая сила частично «тратится» на вес веревки и блока, а также трение.

Подвижный блок, давая почти двойной выигрыш в силе, дает двойной проигрыш в расстоянии. Чтобы поднять груз на определенную высоту h, надо чтобы веревки с каждой стороны блока уменьшились на эту высоту, то есть в сумме получается 2h.

Обычно используют комбинации из неподвижных и подвижных блоков - полиспасты. Они позволяют получить выигрыш в силе и направлении. Чем больше в полиспасте подвижных блоков, тем больше будет выигрыш в силе.

Будем пока считать, что массой блока и троса, а также трением в блоке можно пренебречь. В таком случае можно считать силу натяжения троса одинаковой во всех его частях. Кроме того, трос будем считать нерастяжимым, а его массу - пренебрежимо малой.

Неподвижный блок

Неподвижный блок используют для того, чтобы изменить направление действия силы. На рис. 24.1, а показано, как с помощью неподвижного блока изменить направление силы на противоположное. Однако с его помощью можно изменить направление действия силы как угодно.

Нарисуйте схему использования неподвижного блока, с помощью которого можно повернуть направление действия силы на 90°.

Дает ли неподвижный блок выигрыш в силе? Рассмотрим это на примере, показанном на рис. 24.1, а. Трос натянут силой, приложенной рыбаком к свободному концу троса. Сила натяжения троса остается постоянной вдоль троса, поэтому со стороны троса на груз (рыбу) действует такая же по модулю сила. Следовательно, неподвижный блок не дает выигрыша в силе.

При использовании неподвижного блока груз поднимается на столько же, на сколько опускается конец троса, к которому прикладывает силу рыбак. Это означает, что, используя неподвижный блок, мы не выигрываем и не проигрываем в пути.

Подвижный блок

Поставим опыт

Поднимая груз с помощью легкого подвижного блока, мы заметим, что, если трение мало, то для подъема груза надо прикладывать силу, которая примерно в 2 раза меньше веса груза (рис. 24.3). Таким образом, подвижный блок дает выигрыш в силе в 2 раза.

Рис. 24.3. При использовании подвижного блока мы выигрываем в силе в 2 раза, но во столько же раз проигрываем в пути

Однако за двойной выигрыш в силе приходится платить таким же проигрышем в пути: чтобы поднять груз, например, на 1 м, надо поднять конец переброшенного через блок троса на 2 м.

То, что подвижный блок дает двойной выигрыш в силе, можно доказать и не прибегая к опыту (см. ниже раздел «Почему подвижный блок дает выигрыш в силе в два раза?»).

Подвижный блок отличается от неподвижного тем, что его ось не закреплена, и он может подниматься и опускаться вместе с грузом.

Рисунок 1. Подвижный блок

Как и неподвижный блок, подвижный блок состоит всё из того же колеса с желобом для троса. Однако здесь закреплен один конец троса, а колесо подвижно. Колесо движется вместе с грузом.

Как заметил ещё Архимед, подвижный блок по сути является рычагом и работает по тому же принципу, давая выигрыш в силе за счёт разницы плеч.

Рисунок 2. Силы и плечи сил в подвижном блоке

Подвижный блок перемещается вместе с грузом, он как бы лежит на веревке. В таком случае точка опоры в каждый момент времени будет находиться в месте соприкосновения блока с веревкой с одной стороны, воздействие груза будет приложено к центру блока, где он и крепится на оси, а сила тяги будет приложена в месте соприкосновения с веревкой с другой стороны блока. То есть плечом веса тела будет радиус блока, а плечом силы нашей тяги -- диаметр. Правило моментов в этом случае будет иметь вид:

$$mgr = F \cdot 2r \Rightarrow F = mg/2$$

Таким образом, подвижный блок дает выигрыш в силе в два раза.

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис. 3). Неподвижный блок применяется только для удобства. Он, изменяет направление действия силы, позволяет, например, поднимать груз, стоя на земле, а подвижный блок обеспечивает выигрыш в силе.

Рисунок 3. Комбинация неподвижного и подвижного блоков

Мы рассмотрели идеальные блоки, то есть такие, в которых не учитывалось действие сил трения. Для реальных же блоков необходимо вводить поправочные коэффициенты. Используют такие формулы:

Неподвижный блок

$F = f 1/2 mg $

В этих формулах: $F$ - прилагаемое внешнее усилие (обычно это сила рук человека), $m$ - масса груза, $g$ - коэффициент силы тяжести, $f$ - коэффициент сопротивления в блоке (для цепей примерно 1,05, а для верёвок 1,1).

С помощью системы из подвижного и неподвижного блоков грузчик поднимает ящик с инструментами на высоту $S_1$ = 7 м, прикладывая силу $F$ = 160 Н. Какова масса ящика, и сколько метров верёвки придётся выбрать, пока груз поднимется? Какую работу выполнит в результате грузчик? Сравните её с работой, выполненной над грузом по его перемещению. Трением и массой подвижного блока пренебречь.

$m, S_2 , A_1 , A_2$ - ?

Подвижный блок даёт двойной выигрыш в силе и двойной проигрыш в перемещении. Неподвижный блок не даёт выигрыша в силе, но меняет её направление. Таким образом, приложенная сила будет вдвое меньше веса груза: $F = 1/2P = 1/2mg$, откуда находим массу ящика: $m=\frac{2F}{g}=\frac{2\cdot 160}{9,8}=32,65\ кг$

Перемещение груза будет вдвое меньше, чем длина выбранной верёвки:

Выполненная грузчиком работа равна произведению приложенного усилия на перемещение груза: $A_2=F\cdot S_2=160\cdot 14=2240\ Дж\ $.

Работа, выполненная над грузом:

Ответ: Масса ящика 32,65 кГ. Длина выбранной верёвки 14 м. Выполненная работа равна 2240 Дж и не зависит от способа подъёма груза, а только от массы груза и высоты подъёма.

Задача 2

Какой груз можно поднять с помощью подвижного блока весом 20 Н, если тянуть веревку с силой 154 Н?

Запишем правило моментов для подвижного блока: $F = f 1/2 (P+ Р_Б)$, где $f$ - поправочный коэффициент для верёвки.

Тогда $P=2\frac{F}{f}-P_Б=2\cdot \frac{154}{1,1}-20=260\ Н$

Ответ: Вес груза 260 Н.

Блоки относят к простым механизмам. В группу этих устройств, которые служат для преобразования силы, помимо блоков относят рычаг, наклонную плоскость.

ОПРЕДЕЛЕНИЕ

Блок - твердое тело, которое имеет возможность вращаться вокруг неподвижной оси.

Изготавливаются блоки в виде дисков (колес, низких цилиндров и т. п.), имеющих желоб, через который пропускают веревку (торс, канат, цепь).

Неподвижным называется блок, с закрепленной осью (рис.1). Он не перемещается при подъеме груза. Неподвижный блок можно рассматривать как рычаг, который имеет равные плечи.

Условием равновесия блока является условие равновесия моментов сил, приложенных к нему:

Блок на рис.1 будет находиться в равновесии, если силы натяжения нитей равны:

так как плечи этих сил одинаковы (ОА=ОВ). Неподвижный блок не дает выигрыша в силе, но он позволяет изменить направление действия силы. Тянуть за веревку, которая идет сверху часто удобнее, чем за веревку, которая идет снизу.

Если масса груза, привязанного к одному из концов веревки, перекинутой через неподвижный блок равна m, то для того, чтобы его поднимать, к другому концу веревки следует прикладывать силу F, равную:

при условии, что силу трения в блоке мы не учитываем. Если необходимо учесть трение в блоке, то вводят коэффициент сопротивления (k), тогда:

Заменой блока может служить гладкая неподвижная опора. Через такую опору перекидывают веревку (канат), которая скользит по опоре, но при этом растет сила трения.

Неподвижный блок выигрыша в работе не дает. Пути, которые проходят точки приложения сил, одинаковы, равны силы, следовательно, равны работы.

Для того чтобы получить выигрыш в силе, применяя неподвижные блоки применяют комбинацию блоков, например, двойной блок. При блоки должны иметь разные диаметры. Их соединяют неподвижно между собой и насаживают на единую ось. К каждому блоку прикрепляется веревка, что она может наматываться на блок или сматываться с него без скольжения. Плечи сил в таком случае будут неравными. Двойной блок действует как рычаг с плечами разной длины. На рис.2 изображена схема двойного блока.

Условие равновесия для рычага на рис.2 станет формула:

Двойной блок может преобразовывать силу. Прикладывая меньшую силу к веревке, намотанной на блок большого радиуса, получают силу, которая действует со стороны веревки, навитой на блок меньшего радиуса.

Подвижным блоком называют блок, ось которого перемещается совместно с грузом. На рис. 2 подвижный блок можно рассматривать как рычаг с плечами разной величины. В этом случае точка О является точкой опоры рычага. OA - плечо силы ; OB - плечо силы . Рассмотрим рис. 3. Плечо силы в два раза больше, чем плечо силы , следовательно, для равновесия необходимо, чтобы величина силы F была в два раза меньше, чем модуль силы P:

Можно сделать вывод о том, что при помощи подвижного блока мы получаем выигрыш в силе в два раза. Условие равновесия подвижного блока без учета силы трения запишем как:

Если попытаться учесть силу трения в блоке, то вводят коэффициент сопротивления блока (k) и получают:

Иногда применяют сочетание подвижного и неподвижного блока. В таком сочетании неподвижный блок используют для удобства. Он не дает выигрыша в силе, но позволяет изменять направление действия силы. Подвижный блок применяют для изменения величины прилагаемого усилия. Если концы веревки, охватывающей блок, составляют с горизонтом одинаковые углы, то отношение силы, оказывающей воздействие на груз к весу тела, равна отношению радиуса блока к хорде дуги, которую охватывает веревка. В случае параллельности веревок, сила необходимая для подъема груза потребуется в два раза меньше, чем вес поднимаемого груза.

Золотое правило механики

Простые механизмы выигрыша в работе не дают. Во сколько мы получаем выигрыш в силе, во столько же раз проигрываем в расстоянии. Так как работа равна скалярному произведению сила на перемещение, следовательно, она не изменится при использовании подвижного (как и неподвижного) блоков.

В виде формулы «золотое правило№ можно записать так:

где - путь, который проходит точка приложения силы - путь проходимый точкой приложения силы .

Золотое правило является самой простой формулировкой закона сохранения энергии. Это правило распространяется на случаи, равномерного или почти равномерного движения механизмов. Расстояния поступательного движения концов веревок связаны с радиусами блоков ( и ) как:

Получим, что для выполнения «золотого правила» для двойного блока необходимо, чтобы:

Если силы и уравновешены, то блок покоится или движется равномерно.

Примеры решения задач

ПРИМЕР 1

Задание Используя систему из двух подвижных и двух неподвижных блоков, рабочие поднимают строительные балки, при этом прикладывают силу равную 200 Н. Чему равна масса (m) балок? Трение в блоках не учитывайте.
Решение Сделаем рисунок.

Вес груза, приложенный к системе грузов, будет равен силе тяжести, которая приложена к поднимаемому телу (балке):

Неподвижные блоки выигрыша в силе не дают. Каждый подвижный блок дает выигрыш в силе в два раза, следовательно, при наших условиях мы получим выигрыш в силе в четыре раза. Это значит, что можно записать:

Получаем, что масса балки равна:

Вычислим массу балки, примем :

Ответ m=80 кг

ПРИМЕР 2

Задание Пусть высота, на которую поднимают балки рабочие, в первом примере равна м. Чему равна работа, которую совершают рабочие? Какова работа груза по перемещению на заданную высоту?
Решение В соответствии с «золотым правилом» механики, если мы, используя имеющуюся систему блоков, получили выигрыш в силе в четыре раза, то проигрыш в перемещении составит тоже четыре. В нашем примере это означает, что длина веревки (l) которую рабочим следует выбрать составит длину в четыре раза большую, чем расстояние, которое пройдет груз, то есть:


 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з