Округление с 5. Как округлять числа в большую и меньшую сторону функциями Excel

Научившись умножать многозначные числа «в столбик», мы убедились, что это весьма муторное занятие. К счастью, мы будем этим заниматься недолго. В скором времени все сколь-нибудь сложные вычисления мы будем делать с помощью калькулятора. Сейчас мы практикуемся в счете исключительно в учебных целях, чтобы лучше понять и почувствовать «поведение» чисел. Впрочем, понимание и чутье можно с неменьшим успехом оттачивать на приближенных вычислениях, которые являются значительно более простыми. К ним-то мы теперь и приступим.

Допустим, мы хотим купить пять шоколадок по 19 рублей. Мы смотрим в свой кошелек и хотим быстро сообразить, хватит ли нам на это денег. Мы рассуждаем так: 19 это примерно 20, а 20 умножить на 5 это 100. Вот тут у нас в кошельке как раз есть сто рублей с небольшим. Значит, денег достаточно. Математик бы сказал, что мы округлили девятнадцать до двадцати и проделали приближенные вычисления. Но начнем всё по порядку.

Прежде всего оговоримся, что на первых порах мы будем заниматься округлением только положительных чисел. Делать это можно по-разному. Например, так:

Значок «≈» читается как «приближенно равно». Здесь мы, как говорится, округлили числа вниз и, соотвественно, получили оценку снизу. Делается это очень просто: мы оставляем первую цифру числа такой, как она есть, а все последующие заменяем на нули. Ясно, что результат такого округления всегда оказывается меньше или равен исходному числу.

С другой стороны, числа можно также округлять и вверх, получая, таким образом, оценку сверху:

При таком округлении все цифры, начиная со второй, обращаются в нули, а первая цифра увеличивается на единицу. Особый случай возникает, когда первая цифра равна девятке, которая заменяется сразу на две цифры, 1 и 0:

Результат округления вверх всегда больше или равен исходному числу.

Таким образом, у нас есть выбор, в какую сторону округлять: вверх или вниз. Обычно округляют в ту сторону, в которую ближе. Очевидно, что в большинстве случаев 11 лучше округлить до 10-ти, а 19 - до 20-ти. Формальные правила таковы: если вторая цифра у нашего числа находится в пределах от нуля до 4-х, то округляем вниз. Если же эта цифра оказывается в пределах от 5-ти до 9-ти, то вверх. Таким образом:

98 765 ≈ 100 000.

Отдельно надо отметить ситуацию, когда у числа вторая цифра - пять, а все последующие равны нулю, например 1500. Это число находится на одинаковом расстоянии как от 2000, так и от 1000:

2000 − 1500 = 500,

1500 − 1000 = 500.

Поэтому, казалось бы, всё равно, в какую сторону его округлять. Однако его принято округлять не куда-нибудь, а только вверх - для того, чтобы правила округления можно было сформулировать как можно проще. Если мы видим на втором месте пятерку, то этого уже достаточно для принятия решения о том, куда округлять: последующими цифрами можно уже совершенно не интересоваться.

Пользуясь округлением чисел, мы теперь можем быстро, хотя и приближенно, решать примеры на умножение какой угодно сложности. Пусть требуется вычислить:

Округляем оба сомножителя и за пару секунд получаем:

6879 ∙ 267 ≈ 7000 ∙ 300 = 2 100 000 ≈ 2 000 000 = 2 миллиона.

Для сравнения приведу точный ответ, который мы вычисляли, когда учились умножать в столбик:

6879 ∙ 267 = 1 836 693.

Что надо теперь сделать, чтобы понять, близко или далеко приближенный ответ отстоит от точного? - Конечно же, округлить точный ответ:

6879 ∙ 267 = 1 836 693 ≈ 2 000 000 = 2 миллиона.

У нас получилось, что после округления точный ответ стал равен приближенному. Значит, наш приближенный ответ не так уж и плох. Впрочем, надо заметить, что такая точность достигается далеко не всегда. Пусть надо вычислить 1497∙143. Приближенные вычисления выглядят так:

1497 ∙ 143 ≈ 1000 ∙ 100 = 100 000 = 100 тысяч.

А вот точный ответ (с последующим его округлением):

1497 ∙ 143 = 214 071 ≈ 200 000 = 200 тысяч.

Таким образом, точный ответ после округления оказался в 2 раза больше, чем приближенный. Это, конечно, не очень хорошо. Но признаюсь честно: я специально взял один из самых худших случаев. Обычно точность приближенных расчетов бывает всё же лучше.

Впрочем, мы до сих пор округляли числа и делали приближенные рассчеты лишь в самой, так сказать, грубой форме. Из всех разрядов числа мы оставляли незануленным только один - самый старший. Говорят, что мы округляли числа с точностью до одной значащей цифры. Однако мы можем округлять и поаккуратней, например, до двух значащих цифр:

Правило тут почти такое же, как и раньше. Все разряды, кроме двух самых старших, зануляем. Если в первом из зануленных разрядов стояла цифра в пределах от нуля до 4-х, то ничего больше не делаем. Если же эта цифра была в пределах от 5-ти до 9-ти, то в последний из незануленных разрядов добавляем единицу. Заметим, что если в разряде, в который добавляется единица, стоит девятка, то этот разряд переполняется и скидывается в ноль, а единицу «наследует» более старший разряд. То есть получается вот что:

195 ≈ 190 + 10 = 200,

или даже:

995 ≈ 990 + 10 = 1000.

Подобным же образом определяется и округление до трех значащих цифр и так далее.

Возвращаемся к нашему примеру. Посмотрим, что будет, если округлять числа не до одной, а до двух значащих цифр:

1497 ∙ 143 ≈ 1500 ∙ 140 = 210 000 = 210 тысяч.

И еще раз сравним с точным ответом:

1497 ∙ 143 = 214 071 ≈ 210 000 ≈ 210 тысяч.

Не правда ли, наше приближенное вычисление стало заметно точнее?

А вот еще один знакомый пример, для которого мы напишем два варианта приближенных ответов и сопоставим их с ответом точным:

6879 ∙ 267 ≈ 7 000 ∙ 3 00 = 2 100 000 ≈ 2 000 000,

6879 ∙ 267 ≈ 69 00 ∙ 27 0 = 1 863 000 ≈ 1 9 00 000,

6879 ∙ 267 = 1836693 ≈ 1 8 00 000 ≈ 2 000 000.

Тут самое время упомянуть о таком правиле: Если сомножители округлены до одной значащей цифры, то и приближенный ответ следует сразу же округлить до одной значащей цифры. Если сомножители округлены до двух значащих цифр, то и ответ надо округлять до двух значащих цифр. Вообще, сколько значащих цифр у сомножителей, столько же значащих цифр должно остаться у произведения. Поэтому в первой строчке, едва получив 2 100 000, мы тут же округлили это число до 2 000 000. Так же и во второй строчке: мы не стали останавливаться на промежуточном результате 1 863 000, а сразу же округлили его до 1 9 00 000. Почему так? Потому что в числе 2 100 000 все разряды, кроме самого первого, всё равно вычислены неверно. Подобным же образом, в числе 1 863 000 неверно вычислены все разряды, кроме первых двух. Давайте взглянем на соответствующие расчеты, сделанные «в столбик»:

Здесь слева воспроизведены точные вычисления, а справа - приближенные, выполненные после округления сомножителей до двух значащих цифр. Вместо нулей мы написали кружочки, чтобы подчеркнуть, что на самом деле за этими кружочками-нулями стоят какие-то другие цифры, которые после округления стали нам неизвестны. Не зная всех цифр в первых двух строчках, мы также не можем вычислить всех цифр и в последующих строчках - поэтому там тоже встречаются кружочки. Теперь всмотримся внимательнее: в двух самых старших разрядах нам кружочки нигде не попадаются. Значит, в ответной строке эти разряды вычислены более или менее точно. Но уже в третьем по старшинству разряде есть один кружочек, под которым подразумевается неизвестная нам цифра. Поэтому третий разряд в ответной строке мы, на самом деле, вычислить не можем. Тем более это относится к четвертому и последующим разрядам. Вот эти-то все разряды с неизвестными значениями и должны быть занулены в ходе последующего округления.

А что, интересно, будет, если один из сомножителей округлен с точностью до трех значащих цифр, а другой - только до одной? Давайте посмотрим, как будет выглядеть расчет в этом случае:

Мы видим, что сколь-нибудь надежно определен только самый старший разряд, поэтому округлять ответ надо до одной значащей цифры:

6879 ∙ 267 ≈ 6880 ∙ 3 00 = 2 064 000 ≈ 2 000 000

Мы видим также, что значащая цифра (в данном случае, 2) может отличаться от истинной (в данном случае, 1), но, как правило, не больше чем на единицу.

В общем случае, мы должны ориентироваться на сомножитель с наименьшим числом значащих цифр: точно до такого же числа значащих цифр следует округлять ответ.

До сих пор мы говорили только о приближенном умножении. А как насчет сложения? - Разумеется, сложение тоже может быть приближенным. Только округлять слагаемые, подготавливая их к приближенному сложению, надо не совсем так, как мы округляли сомножители, подготавливая их к приближенному умножению. Рассмотрим пример:

61 238 + 349 = 61 587.

Округлим, для начала, каждое из слагаемых до одной значащей цифры:

61 238 + 349 ≈ 60 000 + 300 = 60 300 ≈ 60 000.

Или, если записать в столбик:

61 238 + 349 ≈ 60 000 + 000 = 60 000.

Мы можем тут вместо второго слагаемого написать 0, или, как еще говорится, полностью пренебречь им по сравнению с первым слагаемым. Попробуем увеличить точность наших расчетов. Округляем теперь до двух значащих цифр:

61 238 + 349 ≈ 61 000 + 350 = 61 350 ≈ 61 000.

И снова мы могли бы сразу пренебречь вторым слагаемым и написать:

61 238 + 349 ≈ 61 000 + 0 = 61 000.

Лишь когда мы увеличиваем точность округления до трех значащих цифр, второе слагаемое начинает играть какую-то роль:

61 238 + 349 ≈ 61 200 + 349 = 61 549 ≈ 61 500.

Однако мы снова перестарались с точностью второго слагаемого: для него вполне было бы досточно и одной значащей цифры:

61 238 + 349 ≈ 61 200 + 300 = 61 500.

Тут действует такое правило: слагаемые, в отличие от сомножителей, следует округлять не до одинакового числа значащих цифр, а до одного и того же разряда. Округлить до разряда десятков - значит, округлить так, чтобы последняя значащая цифра результата округления находилась в разряде десятков. При округлении до разряда сотен последняя значащая цифра находится в разряде сотен и так далее. Приближенный ответ сразу же оказывается округлен с нужной точностью и дальнейшего округления не требует. Выпишем еще раз наш пример, посчитав его с различной точностью:

61 238 + 349 = 61 587 (точный расчет),

61 238 + 349 ≈ 61 240 + 350 = 61 590 (округление до десятков),

61 238 + 349 ≈ 61 200 + 300 = 61 500 (до сотен),

61 238 + 349 ≈ 61 000 + 0 = 61 000 (до тысяч),

61 238 + 349 ≈ 60 000 + 0 = 60 000 (до десятков тысяч),

61 238 + 349 ≈ 100 000 + 0 = 100 000 (до сотен тысяч).

Следует отметить, что при округлении второго слагаемого (349) до тысяч (и, тем более, до более старших разрядов) получается ноль. Здесь в последней строке мы встречаемся также с еще одним примечательным случаем:

61 238 ≈ 100 000,

когда число округляется до более высокого разряда, чем те, которые содержатся в нем самом, - и всё же результат такого округления оказывается отличным от нуля.

Рассмотрим теперь приближенное вычитание. Мы знаем, что вычитание можно рассматривать просто как одну из разновидностей сложения. Поэтому правила приближенного вычитания вообще-то совпадают с правилами приближенного сложения. Однако тут возможна особая ситуация, которая возникает, когда мы вычисляем разность близких друг к другу чисел. Допустим, требуется грубо оценить, чему равно значение выражения:

После грубого округления членов разности мы получаем:

Прямо скажем, получилось не очень-то хорошо. Точное значение, как нетрудно вычислить, таково:

7654 − 7643 = 11.

Всё-таки есть немалая разница между нулем и одиннадцатью! Поэтому даже при самых грубых оценках члены разности принято округлять до такого разряда, чтобы результат был всё же отличен от нуля:

7654 − 7643 ≈ 7650 − 7640 = 10.

А вот еще одна неприятность, которая может случиться при приближенном вычитании:

Мы получили в ответе аж тысячу, в то время как точное значение разности равно всего лишь единице! Тут уж надо смотреть внимательно и не допускать, что называется, формалистского подхода.

Впрочем, возможны такие ситуации, когда значение разности требуется вычислить с точностью до какого-то заранее предопределенного разряда, например, до разряда тысяч. В этом случае вполне допустимо именно так и писать:

7654 − 7643 ≈ 8000 − 8000 = 0.

2500 − 2499 ≈ 3000 − 2000 = 1000.

Формально мы совершенно правы. Мы ошибаемся в разряде тысяч не более, чем на одну единицу, а это - совершенно обычное дело, когда мы работаем с такой точностью, при которой последняя значащая цифра приходится как раз на разряд тысяч. Подобным же образом, с точностью до сотен:

7654 − 7643 ≈ 7700 − 7600 = 100.

2500 − 2499 ≈ 2500 − 2500 = 0.

Хотя приближенные вычисления - вещь довольно простая, подходить к ней совсем уж бездумно нельзя. Всякий раз точность приближения надо выбирать исходя из поставленной задачи и здравого смысла.

Нам осталось рассмотреть приближенное деление. Забегая вперед, скажу, что деление можно рассматривать как разновидность умножения. Поэтому правила приближенного деления - те же самые, как и в случае умножения: делимое и делитель надо округлить до одинакового числа значащих цифр, и это же самое число значащих цифр должно оставаться в ответе.

Но мы до сих пор не проходили деление по-настоящему. Мы умеем делить нацело и делить с остатком, но поделить «по-взрослому», без остатка, одно произвольное число на другое мы еще не можем. Поэтому мы пока выработаем, так сказать, временные правила приближенного деления, отвечающие нашему сегодняшнему пониманию предмета. Делить мы пока будем только грубо, с точностью до одной значащей цифры.

Пусть требуется приближенно вычислить:

Прежде всего округлим делитель (324) до одной значащей цифры:

76 464 / 324 ≈ 76 464 / 300.

Теперь сравним единственную значащую цифру делителя (3) с первой цифрой делимого (7). Тут, в принципе, возможно два случая. Первый случай заключается в том, что первая цифра делимого оказывается больше или равна единственной значащей цифре делителя. Этот случай мы сейчас и рассмотрим, потому что именно он реализуется в данном примере, так как 7 ≥ 3. Теперь мы зануляем все разряды делимого, кроме самого старшего, а значение старшего разряда округляем до ближайшего числа, делящегося нацело на значащую цифру делителя:

76 464 / 324 ≈ 76 464 / 300 ≈ 90 000 / 300.

Заметим, что, по стандартным правилам округления, 76 464 ≈ 80 000, однако, поскольку 8 не делится нацело на 3, мы «пошли еще дальше вверх», так что у нас оказалось 76 464 ≈ 90 000. Далее, у делимого и у делителя убираем одновременно «с хвоста» одинаковое число «лишних нулей»:

76 464 / 324 ≈ 76 464 / 300 ≈ 90 000 / 300 = 900 / 3.

После этого выполнить деление не составляет никакого труда:

76 464 / 324 ≈ 76 464 / 300 ≈ 90 000 / 300 = 900 / 3 = 300.

Приближенный ответ готов. Приведу для сравнения точный ответ:

76 464 / 324 = 236 ≈ 200.

Как видно, расхождение в единственной значащей цифре приближенного ответа составляет одну единицу, что вполне приемлемо.

Пусть теперь надо закончить такие приближенные вычисления:

35 144 / 764 ≈ 35 144 / 800.

Это второй из упомянутых нами случаев, когда первая цифра делимого меньше единственной значащей цифры округленного делителя (3 < 8). В этом случае мы зануляем все разряды делимого, кроме двух самых старших, а то число, которое образует эти два старших разряда, «подтягиваем» к ближайшему числу, которое можно поделить нацело на единственную значащую цифру делителя:

35 144 / 764 ≈ 35 144 / 800 ≈ 32 000 / 800.

(Если «подтянуть» можно с равным успехом в обе стороны, то «подтягиваем», для определенности, вверх.) Теперь убираем «лишние» нули и выполняем деление:

35 144 / 764 ≈ 35 144 / 800 ≈ 32 000 / 800 = 320 / 8 = 40.

Точный расчет таков:

35 144 / 764 = 46 ≈ 50.

И опять точность приближенного результата вполне приемлема.

Следует отметить, что делить приближенно можно даже такие числа, которые нацело друг на друга не делятся. Важно лишь (пока), чтобы делимое было больше или равно делителю.

В заключение этого урока нам осталось разобраться с тем, как округлять отрицательные числа и как делать с ними приближенные вычисления. На самом деле, для любого отрицательного числа мы всегда можем написать что-то в этом роде:

−3456 = −(+3456).

Здесь у нас в скобке стоит положительное число. Его-то мы и округлим по тем правилам, которые мы выработали для положительных чисел. Например, если его требуется округлить до двух значащих цифр, то мы получим:

−3456 = −(+3456) ≈ −(+3500) = −3500.

Так же просто все вычисления с отрицательными числами подменить на вычисления с участием только положительных чисел. Например,

−234 − 567 = −(234 + 567) ≈ −(200 + 600) = −(800) = −800,

234 − 567 = −(567 − 234) ≈ −(600 − 200) = −(400) = −400,

234 ∙ (−567) = −(234 ∙ 567) ≈ −(200 ∙ 600) = −(120 000) = −120 000.

Посмотрим на примерах, как округлить до десятых числа, используя правила округления.

Правило округления числа до десятых.

Чтобы округлить десятичную дробь до десятых, надо оставить после запятой только одну цифру, а все остальные следующие за ней цифры отбросить.

Если первая из отброшенных цифр 0, 1, 2, 3 или 4, то предыдущую цифру не изменяем.

Если первая из отброшенных цифр 5, 6, 7, 8 или 9, то предыдущую цифру увеличиваем на единицу.

Примеры .

Округлить до десятых числа:

Чтобы округлить число до десятых, оставляем после запятой первую цифру, а остальное отбрасываем. Так как первая отброшенная цифра 5, то предыдущую цифру увеличиваем на единицу. Читают: «Двадцать три целых семьдесят пять сотых приближенно равно двадцать три целых восемь десятых».

Чтобы округлить до десятых данное число, оставляем после запятой лишь первую цифру, остальное — отбрасываем. Первая отброшенная цифра 1, поэтому предыдущую цифру не изменяем. Читают: «Триста сорок восемь целых тридцать одна сотая приближенно равно триста сорок одна целая три десятых».

Округляя до десятых, оставляем после запятой одну цифру, а остальные — отбрасываем. Первая из отброшенных цифр — 6, значит, предыдущую увеличиваем на единицу. Читают: «Сорок девять целых, девятьсот шестьдесят две тысячных приближенно равно пятьдесят целых, нуль десятых».

Округляем до десятых, поэтому после запятой оставляем только первую из цифр, остальные — отбрасываем. Первая из отброшенных цифр — 4, значит предыдущую цифру оставляем без изменений. Читают: «Семь целых двадцать восемь тысячных приближенно равно семь целых нуль десятых».

Чтобы округлить до десятых данное число, после запятой оставляет одну цифру, а все следующие за ней — отбрасываем. Так как первая отброшенная цифра — 7, следовательно, к предыдущей прибавляем единицу. Читают: «Пятьдесят шесть целых восемь тысяч семьсот шесть десятитысячных приближенно равно пятьдесят шесть целых, девять десятых».

И еще пара примеров на округление до десятых:

Округлять числа в жизни приходится чаще, чем кажется многим. Особенно это актуально для людей тех профессий, которые связаны с финансами. Этой процедуре люди, работающие в данной сфере, обучены хорошо. Но и в повседневной жизни процесс приведения значений к целому виду не редкость. Многие люди благополучно забыли, как округлять числа, сразу же после школьной скамьи. Напомним основные моменты этого действия.

Вконтакте

Круглое число

Перед тем как перейти к правилам округления значений, стоит разобраться, что представляет собой круглое число . Если речь идет о целых, то оно обязательно заканчивается нулем.

На вопрос, где в повседневной жизни пригодиться такое умение, можно смело ответить – при элементарных походах по магазинам.

С помощью правила приблизительного подсчета можно прикинуть, сколько будут стоить покупки и какую сумму необходимо взять с собой.

Именно с круглыми числами легче выполнять подсчеты, не используя при этом калькулятор.

К примеру, если в супермаркете или на рынке покупают овощи весом 2 кг 750 г, то в простом разговоре с собеседником зачастую не называют точный вес, а говорят, что приобрели 3 кг овощей. При определении расстояния между населенными пунктами также применяют слово «около». Это и значит приведение результата к удобному виду.

Следует отметить, что при некоторых подсчетах в математике и решении задач также не всегда используются точные значения. Особенно это актуально в тех случаях, когда в ответе получают бесконечную периодическую дробь . Приведем несколько примеров, когда используются приближенные значения:

  • некоторые значения постоянных величин представляются в округленном виде (число «пи» и прочее);
  • табличные значения синуса, косинуса, тангенса, котангенса, которые округлены до определенного разряда.

Обратите внимание! Как показывает практика, приближение значений к целому, конечно, дает погрешность, но сосем незначительную. Чем выше разряд, тем точнее будет результат.

Получение приближенных значений

Это математическое действие осуществляется по определенным правилам.

Но для каждого множества чисел они разные. Отмечают, что округлить можно целые числа и десятичные .

А вот с обыкновенными дробями действие не выполняется.

Сначала их необходимо перевести в десятичные дроби , а затем приступить к процедуре в необходимом контексте.

Правила приближения значений заключаются в следующем:

  • для целых – замена разрядов, следующих за округляемым, нулями;
  • для десятичных дробей – отбрасывания всех чисел, которые находятся за округляемым разрядом.

К примеру, округляя 303 434 до тысяч, необходимо заменить сотни, десятки и единицы нулями, то есть 303 000. В десятичных дробях 3,3333 округляя до десяты х, просто отбрасывают все последующие цифры и получают результат 3,3.

Точные правила округления чисел

При округлении десятичных дробей недостаточно просто отбросить цифры после округляемого разряда . Убедиться в этом можно на таком примере. Если в магазине куплено 2 кг 150 г конфет, то говорят, что приобретено около 2 кг сладостей. Если же вес составляет 2 кг 850 г, то производят округление в большую сторону, то есть около 3 кг. То есть видно, что иногда округляемый разряд изменен. Когда и как это проделывают, смогут ответить точные правила:

  1. Если после округляемого разряда следует цифра 0, 1, 2, 3 или 4, то округляемый оставляют неизменным, а все последующие цифры отбрасываются.
  2. Если после округляемого разряда следует цифра 5, 6, 7, 8 или 9, то округляемый увеличивают на единицу, а все последующие цифры также отбрасываются.

К примеру, как правильно дробь 7,41 приблизить к единицам . Определяют цифру, которая следует за разрядом. В данном случае это 4. Следовательно, согласно правилу, число 7 оставляют неизменным, а цифры 4 и 1 отбрасывают. То есть получаем 7.

Если округляется дробь 7,62, то после единиц следует цифра 6. Согласно правилу, 7 необходимо увеличить на 1, а цифры 6 и 2 отбросить. То есть в результате получится 8.

Представленные примеры показывают, как округлить десятичные дроби до единиц.

Приближение до целых

Отмечено, что округлять до единиц можно точно так же, как и до целых. Принцип один и тот же. Остановимся подробнее на округлении десятичных дробей до определенного разряда в целой части дроби. Представим пример приближения 756,247 до десятков. В разряде десятых располагается цифра 5. После округляемого разряда следует цифра 6. Следовательно, по правилам необходимо выполнить следующие шаги :

  • округление в большую сторону десятков на единицу;
  • в разряде единиц цифру 6 заменяют ;
  • цифры в дробной части числа отбрасываются;
  • в результате получают 760.

Обратим внимание на некоторые значения, в которых процесс математического округления до целых по правилам не отображает объективную картину. Если взять дробь 8,499, то, преобразовывая его по правилу, получаем 8.

Но по сути это не совсем так. Если поразрядно округлить до целых, то вначале получим 8,5, а затем отбрасываем 5 после запятой, и осуществляем округление в большую сторону.

Округление чисел - простейшая математическая операция. Чтобы уметь правильно округлять числа, необходимо знать три правила.

Правило 1

Когда мы округляем число до какого-то разряда, мы должны избавиться от всех цифр справа от этого разряда.

Например, нам нужно округлить число 7531 до сотен. В этом числе пять сотен. Справа от этого разряда стоят цифры 3 и 1. Превращаем их в нули и получаем число 7500. То есть, округлив число 7531 до сотен, мы получили 7500.

При округлении дробных чисел все происходит так же, только лишние разряды можно просто отбросить. Допустим, нам нужно округлить число 12,325 до десятых. Для этого после запятой мы должны оставить одну цифру - 3, а все цифры, стоящие справа, отбрасываем. Результат округления числа 12,325 до десятых - 12,3.

Правило 2

Если справа от оставляемой цифры отбрасываемая цифра равна 0, 1, 2, 3 или 4, то цифра, которую мы оставляем, не меняется.

Это правило сработало в двух предыдущих примерах.

Так, при округлении числа 7531 до сотен самой близкой к оставляемой цифре из отбрасываемых была тройка. Поэтому цифра, которую мы оставили, - 5 - не изменилась. Результатом округления стало число 7500.

Точно так же при округлении числа 12,325 до десятых цифрой, которую мы отбросили после тройки, была двойка. Поэтому самая правая из оставленных цифр (тройка) при округлении не изменилась. Получилось 12,3.

Правило 3

Если же самая левая из отбрасываемых цифр равна 5, 6, 7, 8 или 9, то разряд, до которого мы округляем, увеличивается на единицу.

Например, нужно округлить число 156 до десятков. В этом числе 5 десятков. В разряде единиц, от которого мы собираемся избавиться, стоит цифра 6. Значит, разряд десятков нам следует увеличить на единицу. Поэтому при округлении числа 156 до десятков мы получим 160.

Рассмотрим пример с дробным числом. Например, мы собираемся округлить 0,238 до сотых. По правилу 1 мы должны отбросить восьмёрку, которая стоит справа от разряда сотых. А по правилу 3 нам придётся увеличить тройку в разряде сотых на один. В итоге, округлив число 0,238 до сотых, мы получим 0,24.

Чтобы округлить число до какого-либо разряда – подчеркнем цифру этого разряда, а затем все цифры, стоящие за подчеркнутой, заменяем нулями, а если они стоят после запятой – отбрасываем. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения . Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то подчеркнутую цифру увеличиваем на 1.

Примеры.

Округлить до целых:

1) 12,5; 2) 28,49; 3) 0,672; 4) 547,96; 5) 3,71.

Решение. Подчеркиваем цифру, стоящую в разряде единиц (целых) и смотрим на цифру, стоящую за ней. Если это цифра 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения, а все цифры после нее отбрасываем. Если же за подчеркнутой цифрой стоит цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на единицу.

1) 12 ,5≈13;

2) 28 ,49≈28;

3) 0 ,672≈1;

4) 547 ,96≈548;

5) 3 ,71≈4.

Округлить до десятых:

6) 0, 246; 7) 41,253; 8) 3,81; 9) 123,4567; 10) 18,962.

Решение. Подчеркиваем цифру, стоящую в разряде десятых, а затем поступаем согласно правилу: все стоящие после подчеркнутой цифры отбросим. Если за подчеркнутой цифрой была цифра 0 или 1 или 2 или 3 или 4, то подчеркнутую цифру не изменяем. Если за подчеркнутой цифрой шла цифра 5 или 6 или 7 или 8 или 9, то подчеркнутую цифру увеличим на 1.

6) 0, 2 46≈0,2;

7) 41,2 53≈41,3;

8) 3,8 1≈3,8;

9) 123,4 567≈123,5;

10) 18,9 62≈19,0. За девяткой стоит шестерка, поэтому, девятку увеличиваем на 1. (9+1=10) нуль пишем, 1 переходит в следующий разряд и будет 19. Просто 19 мы в ответе записать не можем, так как должно быть понятно, что мы округляли до десятых — цифра в разряде десятых должна быть. Поэтому, ответ: 19,0.

Округлить до сотых:

11) 2, 045; 12) 32,093; 13) 0, 7689; 14) 543, 008; 15) 67, 382.

Решение. Подчеркиваем цифру в разряде сотых и, в зависимости от того, какая цифра стоит после подчеркнутой, оставляем подчеркнутую цифру без изменения (если за ней 0, 1, 2, 3 или 4) или увеличиваем подчеркнутую цифру на 1 (если за ней стоит 5, 6, 7, 8 или 9).

11) 2, 04 5≈2,05;

12) 32,09 3≈32,09;

13) 0, 76 89≈0,77;

14) 543, 00 8≈543,01;

15) 67, 38 2≈67,38.

Важно: в ответе последней должна стоять цифра в том разряде, до которого вы округляли.

Математика. 6 класс. Тест 5 . Вариант 1 .

1. Бесконечные десятичные непериодические дроби называют... числами.

А) положительными; В) иррациональными; С) четными; D) нечетными; Е) рациональными.

2 . При округлении числа до какого-либо разряда все следующие за этим разрядом цифры заменяют нулями, а если они стоят после запятой — отбрасывают. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то стоящую перед ней цифру не изменяют. Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то стоящую перед ней цифру увеличивают на единицу. Округлить до десятых число 9,974.

A) 10,0; B) 9,9; C) 9,0; D) 10; E) 9,97.

3. Округлить до десятков число 264,85 .

A) 270; B) 260; C) 260,85; D) 300; E) 264,9.

4 . Округлить до целых число 52,71.

A) 52; B) 52,7; C) 53,7; D) 53; E) 50.

5. Округлить до тысячных число 3, 2573 .

A) 3,257; B) 3,258; C) 3,28; D) 3,3; E) 3.

6. Округлить до сотен число 49,583 .

A) 50; B) 0; C) 100; D) 49,58; E) 49.

7. Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода; а знаменатель состоит из девяток и нулей, причем, девяток столько, сколько цифр в периоде, а нулей столько, сколько цифр после запятой до периода. 0,58 (3) в обыкновенную.

8. Обратить бесконечную периодическую десятичную дробь 0,3 (12) в обыкновенную.

9. Обратить бесконечную периодическую десятичную дробь 1,5 (3) в смешанное число.

10. Обратить бесконечную периодическую десятичную дробь 5,2 (144) в смешанное число.

11. Любое рациональное число можно записать Записать число 3 в виде бесконечной периодической десятичной дроби.

А) 3,0 (0); В) 3,(0); С) 3; D) 2,(9); E) 2,9 (0).

12 . Записать обыкновенную дробь ½ в виде бесконечной периодической десятичной дроби.

A) 0,5; B) 0,4 (9); C) 0,5 (0); D) 0,5 (00); E) 0,(5).

Ответы к тестам Вы найдете на странице «Ответы».

Страница 1 из 1 1



 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з