Автоматизация холодильной установки том 2а. Цели автоматизации холодильных установок. Системы автоматического регулирования

2. Регулирование температуры в охлаждаемом объекте

3. Регулирование давления хладагента

4. Реле контроля смазки

5. Регулирование холодопроизводительности

6. Регулирование давления конденсации

7. Регуляторы давления испарения.

8. Регуляторы производительности.

9. Пусковые регуляторы.

10. Соленоидные вентили и клапаны обратимости цикла

11. Автоматическое оттаивание испарителей.

12. Микропроцессорные приборы управления для холодильных установок.

13. Схемы автоматизации торгового холодильного оборудования.

1. Системы автоматического регулирования

Для обеспечения нормальной работы холодильной установки необходимо поддерживать в определенных пределах или регули­ровать в соответствии с заданной программой значения целого ряда физических величин или параметров, основными из кото­рых являются:

1. Температура в охлаждаемом объеме.

2. Оптимальное заполнение испарителя хладагентом.

3. Давления кипения и кон­денсации хладагента.

4. Производительность компрессора.

Автоматическое регулирование холодильной машины позво­ляет обеспечить точность поддержания заданных параметров. В ре­зультате поддержания оптимального режима эксплуатации холо­дильного оборудования сокращаются потери пищевых продуктов в холодильной камере, сохраняется их качество, снижаются экс­плуатационные затраты, увеличивается срок службы холодильных установок.

Автоматизация процессов регулирования, защиты и сигнализации. Автоматизация холодильной установки включает автоматизацию процессов сигнализации, защиты и регулирования.

Регулирование - это процесс поддержания значения па­раметра (температуры, давления и т.п.), называемого регулируе­мым, постоянным либо в заданных пределах. Процесс поддержа­ния постоянной температуры в охлаждаемом помещении называется регулированием температуры. Соответственно сама тем­пература будет регулируемым параметром. Система автоматичес­кого регулирования обеспечивает поддержание регулируемого параметра (температуры, давления или уровня) в заданных пре­делах.

Она включает в себя объект регулирования, автомати­ческий регулятор, регулирующий орган, а также связи между ними (рис. 12.1).

Рис. 12.1. Структурная схема системы автоматического регулирования

Объект регулирования - это помещение, емкость, система или механизм, в которых регулируется протекающий процесс, т.е. под­держивается постоянное значение регулируемого параметра. Так, при регулировании температуры в охлаждаемом помещении объек­том регулирования будет само помещение.

Автоматический регулятор - контролирует заданный процесс в объекте регулирования и управляет работой регулирующего орга­на в соответствии с задачей регулирования.

Регулирующий орган (клапан, механизм) служит для измене­ния расхода вещества (хладагента, воздуха, рассола), подводимо­го к объекту регулирования.

Система автоматического регулирования работает следующим образом. Автоматический регулятор постоянно замеряет значение регулируемого параметра и сравнивает его с заданным. При от­клонении регулируемого параметра от заданного значения авто­матический регулятор через регулирующий орган изменяет рас­ход подводимого вещества таким образом, чтобы регулируемый параметр вернулся в исходное состояние. Например, увеличение тепловой нагрузки в охлаждаемом помещении вызовет в нем рост температуры. Автоматический регулятор, определив значение и знак отклонения регулируемой температуры от заданной, даст управляющий сигнал на регулирующий орган. Он увеличивает отвод теплоты из помещения, и его температура вернется к заданному значению.

Системы автоматической защиты - устраняют возможность ава­рий при внезапном изменении режима работы агрегата. При дос­тижении предельного значения контролируемого параметра авто­матический регулятор через регулирующий орган либо выключа­ет контролируемый агрегат, либо ограничивает рост параметра во избежание разрушения механизма.

Системы автоматической сигнализации в зави­симости от назначения делятся на две группы:

1. Системы аварийно-предупредительной сигнализации.

2. Системы сигнализации рабо­тающих механизмов.

Система аварийно-предупредительной сигнализации - при дости­жении контролируемым параметром предельного значения выда­ет световой или звуковой сигнал. Обслуживающий персонал из­меняет опасный режим работы механизма, воздействуя на регу­лирующий орган.

Система сигнализации работающих механизмов - дает световую индикацию на пульте управления о включении в работу наиболее важных механизмов.

Приборы автоматического регулирования и контроля процес­сов, протекающих при работе холодильной установки, предназ­начены для обеспечения безопасной эксплуатации установки и повышения эффективности ее работы. Экономичность эксплуата­ции повышается главным образом за счет уменьшения затрат тру­да на обслуживание холодильной установки и повышения произ­водительности труда персонала. Использование приборов автоматики и защиты позволяет решить главную задачу - поддержание заданной температуры охлаждаемого объекта. К за­дачам автоматизации процессов установки относят также поддер­жание определенного уровня жидкого хладагента в аппаратах и постоянной температуры конденсации; обеспечение защиты от гидравлического удара, перегрева отдельных частей установки, взрыва аппаратов, замерзания хладоносителя, срыва работы насоса.

Задачей обслуживающего персонала является грамотное тех­ническое обслуживание приборов, входящих в состав схемы, и периодическая проверка их исправности: защитных реле уровня - один раз в 10 дней, других приборов автоматики - один раз в месяц. Среди приборов автоматики наибольшее применение на­ходят реле температуры, давления и разности давлений, регуля­торы уровня и реле уровня с исполнительными механизмами, терморегулирующие вентили, реле протока и расхода. Настройка этих приборов, как правило, производится при пусконаладочных работах. Современные торговые хладоновые холодильные маши­ны оснащены рядом приборов, полностью или частично автома­тизирующих рабочие процессы. Применяются различные схемы автоматизации. При полной автоматизации отпадает необходимость в систематическом контроле за работой холодильной машины, и обслуживающий персонал осуществляет лишь периодическое наблюдение, проверяя исправность оборудования и устраняя воз­никшие технические неполадки.

Широко используемые в торговле хладоновые холодильные машины с непосредственной системой охлаждения, как прави­ло, полностью автоматизированы.

Применение средств автоматизации делает работу холодиль­ных машин более производительной, экономически выгодной и безопасной.

Автоматизация производственных процессов является важнейшим условием технического прогресса любой отрасли промышленности.

Цель автоматизации холодильных установок - замена ручного труда, точное поддержание заданных параметров, предотвращение аварий, увеличение срока службы оборудования, сокращение затрат, повышение культуры производства.

Эксплуатация автоматизированных холодильных установок обходится дешевле, так как отпадает необходимость в части обслуживающего персонала, занятого ручными операциями по пуску, регулированию и остановке холодильного оборудования, визуальному наблюдению за работой машин и аппаратов.

Устройства автоматизации могут выполнять как отдельные операции: контроль, сигнализация, включение и выключение исполнительных механизмов, так и совокупность этих операций: автоматическая защита и регулирование.

Любая операция, осуществляемая машинистом современных холодильных установок, поддается автоматизации. Однако не все операции целесообразно автоматизировать.

Автоматизация процессов регулирования и защиты необходима в тех случаях, когда эти процессы требуют затрат ручного труда и когда машинист не может обеспечить точное регулирование и надежную защиту. Очень важно также автоматизировать работы во вредных и взрывоопасных помещениях.

Абсорбционные и пароэжекторные холодильные машины ввиду отсутствия движущихся механизмов (кроме насосов) легче поддаются полной автоматизации, чем крупные компрессионные, которые требуют непрерывного наблюдения и квалифицированного обслуживания.

Крупные и средние холодильные установки снабжают частичной автоматизацией, при которой автоматически регулируется лишь часть процессов. Чаще такие холодильные установки работают на полуавтоматическом режиме, при котором остановка машины происходит автоматически, а пуск вручную.

Основными частями любой автоматической системы являются: измерительный (чувствительный) элемент, или датчик, воспринимающий изменение регулируемой величины; регулирующий орган, изменяющий по сигналу измерительного элемента подачу вещества или энергии в регулируемый объект, и передаточное устройство, соединяющее датчик с исполнительным механизмом. Измерительный элемент снабжен обычно приспособлением для настройки на заданное значение регулируемой величины.

Приборы автоматического управления должны включать или выключать компрессоры и насосы при изменениях нагрузки. Компрессорами управляют с помощью реле температуры, останавливающих компрессоры при понижении температуры рассола или давления в испарителях ниже заданного предела и включающих их при повышении температуры в испарителе. Иногда холодильные машины включают с помощью реле времени, которому задают время включения компрессора.

Приборы автоматического регулирования предназначены для поддержания заданных параметров работы холодильной установки: температуры, давления, уровня. Благодаря плавному регулированию холодопроизводительности можно поддерживать заданную температуру хладоносителя при понижении тепловой нагрузки. Достигается оно следующими путями:
установкой регуляторов давления «до себя», поддерживающих постоянное давление в испарителях и дросселирующих пары перед компрессором;
установкой регуляторов давления «после себя», перепускающих часть паров из нагнетательной линии во всасывающую. За счет этого часть паров, которая могла бы поступить в компрессор из испарителя, отсекается и холодопроизводительность установки падает;
подключением дополнительного вредного пространства в поршневом компрессоре, уменьшающего отсос паров хладагента из испарителя.

Регулирование подачи хладагента в испаритель преследует две цели: обеспечение безопасной работы компрессора, путем защиты его от гидравлического удара и уменьшение или увеличение холодопроизводительности установки.

Автоматическая сигнализация оповещает о изменениях режима, которые могут повлечь за собой срабатывание элементов автоматической защиты, и извещает о включении и выключении машин, магнитных вентилей, задвижек и приборов. Примером сигнального прибора служит дистанционный указатель уровня ДУ, соединяемый с исполнительными механизмами - соленоидными вентилями или звуковыми сигнальными устройствами - ревунами.

Автоматическая защита позволяет избегать опасных для холодильной машины последствий чрезмерного повышения давления нагнетания, понижения давления и температуры испарения, нарушений режима работы смазочных устройств и т. д.

Для защиты установок от аварийного режима в схемах автоматизации предусматривают приборы, отключающие холодильные агрегаты при резких нарушениях режима работы.

Вынос вторичных показаний приборов контроля и измерения (термометров, манометров, расходомеров, указателей уровня) на центральный щит, где расположена и регулирующая станция, позволяет управлять работой холодильной установки централизованно. Часть измерений записывают самопишущие приборы (термометры, манометры).

Комплексная автоматизация холодильной установки состоит в оснащении ее устройствами автоматического управления, регулирования и защиты, а также средствами контроля и сигнализации, обеспечивающими исправную работу этих устройств.

Контрольные вопросы
1. Что дает автоматизация холодильных установок?

2. Назовите основные элементы автоматизации.

3. Из каких элементов состоит система автоматического регулирования?

4. Расскажите об устройстве ТРВ,
170
5. Объясните конструкцию и принцип работы соленоидного вентиля.

6. Как работают мембранные пневматические клапаны?

7. Назовите способы регулирования холодопроизводительности.

8. Расскажите о работе реле давления.

9. Расскажите об устройстве РУКЦ.

10. Что вы знаете о водорегулирующем вентиле?

11. Перечислите способы защиты компрессора от опасности гидравлического удара.

12. Объясните устройство и принцип работы дистанционного указателя уровня.

13. Какие виды автоматической сигнализации вы знаете?

14. Проследите работу приборов автоматизации в схеме двухступенчатой холодильной установки.

15. Расскажите об особенностях автоматизации холодильных турбоагрегатов.

16. Расскажите о схемах автоматизации отдельных узлов аммиачных холодильных установок.

Назначение

Установки пропанового охлаждения природного газа предназначены для одновременного обеспечения требуемых параметров точки росы по воде и углеводородам посредством конденсации водной и углеводородной фракции (УВ) при низких температурах (до минус 30 0 С). Источником холода является внешний пропановый холодильный цикл.

Основное преимущество таких установок – низкие потери давления сырьевого потока (дросселирование потока природного газа не требуется) и возможность извлечения продукционной фракции С3+.

Для предотвращения гидратообразования используется впрыск ингибитора: этиленгликоля (для температур не ниже минус 35 0 С) и метанола (для температур вплоть до минус 60 0 С).

Основные преимущества

Надежность

  • Непрерывный процесс, основанный на конденсации воды и УВ фракций в присутствии ингибитора гидратообразования.
  • Отсутствие циклических колебаний.
  • Кожухотрубный теплообменник газ-газ с низким температурным напором.
  • Сервис-фактор мотора холодильного компрессора 110%.
  • Автоматическая система поддержания давления в ресивере при эксплуатации в холодном климате.
  • Электрообогрев сборника ингибитора в трехфазном сепараторе.

Эффективность

  • Холодный сепаратор с эффективными коалесцирующими насадками и значительным временем пребывания.
  • Теплообменник газ-пропан (чиллер) с погруженным трубным пучком.

Возможные опции

  • Экономайзер холодильного цикла (стандарт для систем свыше 150 кВт и температурой испарения ниже минус 10 0 С).
  • Входной сепаратор.
  • Теплообменник газ-жидкость (позволяет снизить потребляемую мощность компрессора).

Технологическая схема

Влагонасыщенный поток природного газа подается во входной сепаратор (1), в котором из потока удаляются свободная вода и УВ фракции. Газовая фракция направляется в теплообменник газ-газ (2) для предварительного охлаждения потоком сухого отбензиненного газа из холодного сепаратора. Для предотвращения гидратообразования в теплообменнике предусмотрены форсуночные устройства для впрыска ингибитора (метанол или этиленгликоль).

Рис. 3 Принципиальная схема пропановой холодильной установки

После предварительного охлаждения в теплообменнике газ-газ поток подается в теплообменник газ-пропан (чиллер) (4), в котором происходит понижение температуры потока до заданного значения посредством теплообмена с потоком кипящего пропана. Сырьевой поток находится в трубном пучке, который в свою очередь погружен в объем хладагента.

Образовавшаяся в результате охлаждения парожидкостная смесь поступает на разделение в низкотемпературный трехфазный сепаратор (5), где разделяется на потоки отбензиненного газа, конденсата и насыщенного водой ингибитора гидратообразования.

Сухой отбензиненный газ (СОГ) подается противотоком в теплообменник газ-газ (2) и далее отводится за пределы установки.

Жидкостные фракции отводятся независимыми автоматическими конроллерами уровня в соответствующие линии.

Статьи по теме

Газопереработка - это просто

Одной из наших основных задач является борьба с мифом о том, что газопереработка это сложно, долго и дорого. Удивительно, но на проекты, которые в США реализуются за 10 месяцев, на территории СНГ уходит до трех лет. Установки, занимающие в США 5000 м2, на территории СНГ с трудом умещаются на 20 000 м2. Проекты, окупающиеся в США за 3-5 лет, даже при существенно более низкой стоимости реализации продукта, на территории России и Казахстана не окупаются никогда.

Системы автоматизации . Автоматизация работы холодильных машин в зависимости от выполняемых функций подразделяется на системы:

регулирования , поддерживающие заданное значение регулируемой величины (температуры, давления, количества хладагента и др.);

защиты, т.е для выключения установки при чрезмерном отклонении параметров режима её работы;

сигнализации , т.е. для включения визуального или (и) звукового сигнала при нарушении режима работы холодильной установки;

контроля , когда необходимо контролировать какие-либо режимные параметры работы холодильной машины.

В зависимости от привод в действие системы автоматизации бывают электрические , пневматические и комбинированные , а по принципу действия - позиционные и непрерывные .

Система автоматического регулирования холодильной установки позволяет обеспечить заданный температурный режим для перевозимого груза без участия обслуживающего персонала.

Системой автоматизации называют совокупность объекта автоматизации и автоматических устройств, позволяющих управлять работой этого объекта без участия персонала. Объектом автоматизации могут быть холодильная установка в целом либо отдельные её агрегаты, узлы, аппараты и т.д. Системы автоматизации могут быть замкнутыми и разомкнутыми.

Рис. 4.26 - Замкнутая система автоматизации

Замкнутая система состоит из объекта (Об ) и автоматического устройства (А ), которые соединены между собой прямой (ПС ) и обратной (ОС ) связями, которые показаны на рис. 4.26. По прямой связи к объекту подводится входное воздействие х , по обратной - выходная величина у , которые воздействуют на А . Система ОС работает по отклонению фактической величины у от заданного значения у з.

Если назначение системы - поддерживать величину у около заданного значения при изменениях внешнего воздействия f вн, то такую систему называют системой автоматического регулирования (САР ), а автоматическое устройство - автоматическим регулятором (АР ). Функциональная система САР показана на рис. 4.27.



Рис. 4.27 - Функциональная схема системы автоматического
регулирования (САР)

На функциональной схеме САР в цепь прямой связи входят: усилитель , исполнительный механизм (ИМ ) и регулирующий орган (РО ). В цепь обратной связи включён датчик , с помощью которого регулятор АР воспринимает регулируемую величину У и преобразует её в величину У п, удобную для дальнейшей передачи. На один из входов элемента сравнения (ЭС ) подаётся преобразованная величина У п, а на другой его вход - сигнал У з от задатчика .

Этот сигнал в преобразованном виде представляет собой задание регулятору. Величина согласования d = У з – У п является побуждающим сигналом. Мощность его увеличивается в усилителе подводом внешней энергии Э вн и в виде сигнала D воздействует на ИМ , который преобразует сигнал в удобный для использования вид энергии D х и переставляет в РО . В результате изменяется подводимый к Об поток энергии, что соответствует изменению регулирующего воздействия х .

Если нормальная работа объекта протекает при значениях у , отличающихся от у з, а при достижении равенства между ними в объект посылается сигнал х на отключение, то такую систему называют системой автоматической защиты (САЗ ), а автоматическое устройство - устройством защиты (АЗ ). Такая функциональная система показана на рис. 4.28.

Схема САЗ отличается от схемы САР тем, что в автоматическом устройстве АЗ отсутствуют ИМ и РО . Сигнал от усилителя воздействует непосредственно на Об , выключая его целиком или отдельные его части.

Рис. 4.28 - Функциональная схема системы автоматической защиты (САЗ)

Рис. 4.29 - Разомкнутая система автоматизации

Разомкнутой системой называют систему, в которой одна из связей (обратная или прямая) отсутствует (рис. 4.29). Параметр Z связан с выходной величиной у и воспринимается автоматическим устройством А . Отклонение от заданного значения Z 3 вызывает изменения воздействия х .

Автоматизация работы испарителей . Одним из важных процессов управления холодильной машиной является автоматическое питание испарителей по перегреву пара и по уровню жидкости в испарителе. В качестве автоматического регулятора перегрева в основном применяют терморегулирующие вентили (ТРВ).

ТРВ установлен перед испарителем. В верхней части вентиля (рис. 4.30) припаяна капиллярная трубка 7 , соединяющая внутреннюю рабочую часть 6 вентиля с термобаллоном 8 . Верхняя силовая часть вентиля герметична. Термобаллон плотно прикреплён к всасывающему трубопроводу, соединяющему испаритель с компрессором. Термобаллон, капилляр и пространство над мембраной при изготовлении вентиля заполняют строго дозированным количеством хладона. От донышка мембраны 5 вниз идёт шток 4 с запорным клапаном 3 , который прижимается к седлу пружиной 2 с регулировочным винтом 1 .

Рис. 4.30 - Схема терморегулирующего вентиля с внутренним уравниванием

Принцип действия ТРВ основан на сравнении температуры кипения хладагента в испарителе с температурой выходящих из него паров. Сравнение производится преобразованием воспринимаемой термобаллоном температуры паров t в в соответствующее давление р с в силовой части прибора (см. рис. 4.30). Давление действует на мембрану сверху и стремится через шток открыть клапан 3 на большее проходное сечение. Такому перемещению клапана препятствует давление кипения хладона в испарителе р о, действующее на мембрану снизу, а также усилие пружины f и давление р к на клапан.

При правильном заполнении испарителя температура паров на выходе из него не должна превышать 4,7°С. Для этого весь хладон, поданный через ТРВ в испаритель, должен выкипеть на участке от клапана 3 до точки А. Здесь температура хладона не изменяется и составляет t о. В последних витках испарителя от точки А до термобаллона хладон, продолжая воспринимать тепло от охлаждаемого помещения, перегревается до температуры t в > t о. Температуру t в воспринимает термобаллон, и в силовой системе устанавливается давление р с. При равновесии р с = р о + f + р к происходит допустимо полное заполнение испарит5еля хладоном, и холодильная машина работает в оптимальном режиме.

С понижением температуры в охлаждаемом помещении теплопритоки к испарителю уменьшаются. Кипение хладагента в точке А не заканчивается, а продолжается до точки Б. Путь парообразного хладагента до термобаллона сокращается, и перегрев паров уменьшается. Термобаллон воспринимает более низкую температуру, и в силовой системе устанавливается меньшее значение р с. Под действием пружины клапан перемещается вверх, уменьшая проходное сечение вентиля и тем самым подачу хладагента в испаритель.

При меньшем количестве хладагента кипение его в испарителе заканчивается раньше, и перегрев принимает значение, близкое к первоначальному. Перемещение клапана вверх происходит до установления нового равновесия между снизившимся давлением и уменьшившимся сжатием пружины, т.е. р с = р о + f + р к. Перегрев паров в испарителе регулируют поджатием пружины 2 с помощью регулировочного винта 1 .

Термобаллон 8 , капилляр 7 и мембрана 5 (см. рис. 4.30) являются основными элементами манометрических приборов-термостатов , которые применяются для автоматического регулирования работы дизель-генераторных и холодильных агрегатов на рефрижераторном подвижном составе.

Автоматическое поддержание температурного режима в грузовых помещениях. Для установления необходимого температурного режима в грузовом помещении рефрижераторного транспортного или складского модуля и автоматического поддержания его в заданных пределах служит прессостат-терморегулятор , устройство которого показано на рис. 4. 31.

Рис. 4.31 - Устройство прессостата

Прессостат устанавливают на всасывающем трубопроводе между испарителем и компрессором. Он состоит из поршня 1 , жёстко связанного с ним штока 2 , пружины 4 , рукоятки 5 , двух электрических контактов: подвижного 6 и неподвижного 7 .

Поршень находится в колене 3 , соединённом со всасывающим трубопроводом 8 . При давлении р о, большем чем сила закручивания пружины 4 , поршень находится в крайнем верхнем положении. При этом контакты 6 и 7 замкнуты. Компрессор включён и отсасывает пары хладона из испарителя. В процессе отсасывания паров давление р о понижается, становится меньше, чем сила закручивания пружины. Поршень с подвижным контактом перемещается в крайнее нижнее положение, и компрессор выключается.

Вследствие продолжающегося кипения хладона в испарителе его удельный объём увеличивается, давление р о снова начнёт расти. Контакты 6 и 7 замкнутся, компрессор начнёт отсасывать пары хладона из испарителя. Цикл повторяется.

Ход поршня ограничивается специальными упорами, которые могут регулироваться. Сила воздействия пружины на поршень регулируется рукояткой 5 . При установке рукоятки в положение «холод» сила закручивания пружины уменьшается. Следовательно, в зоне испарителя установится меньшее давление р о, а значит и низкая температура кипения хладона.

Таким образом прессостат-терморегулятор поддерживает на требуемом уровне давление кипения в испарителе путём управления количеством хладагента, направляющегося в испаритель.

Главным условием технического развития любой отрасли промышленности является автоматизация производственных процессов, т.е. комплекс технических мероприятий, полностью или частично исключающих участие человека в определенном этапе производственного процесса.

Главными целями автоматизации холодильных установок являются:

  • механизация производственного процесса;
  • точное поддержание заданных параметров работы оборудования;
  • предотвращение поломки оборудования;
  • повышение срока службы холодильного оборудования;
  • сокращение персонала и уменьшение затрат на оплату труда;
  • обеспечение безопасной работы персонала.

Любая операция, производимая машинистом современных холодильных машин, поддается автоматизации, но это не значит, что необходимо автоматизировать все процессы. Автоматика для холодильного оборудования необходима только в тех случаях, когда для выполнения операций вообще не требуется квалификации исполнителя или когда исполнитель не сможет добиться необходимой точности регулирования. Также необходимо в обязательном порядке автоматизировать все процессы, проходящие во взрывоопасных и вредных для здоровья человека условиях.

По степени автоматизации холодильное оборудование можно условно разделить на три группы:

  1. 1. Холодильное оборудование с ручным управлением – все функции управления и контроля холодильной системы выполняет персонал.
  2. 2. В частично автоматизированном холодильном оборудовании некоторые процессы автоматизированы, но оборудование должно работать при постоянном присутствии персонала; в таких машинах чаще всего пуск происходит вручную, а остановка автоматизирована.
  3. 3. Полностью автоматизированное холодильное оборудование не требует постоянного присутствия обслуживающего персонала, но не отменяет необходимости периодических осмотров и проведения технического обслуживания по установленному регламенту. В основном полностью автоматизированными бывают пароэжекторные и абсорбционные холодильные агрегаты из-за отсутствия в них движущихся механизмов.

Разновидности систем автоматизации холодильных установок

Система автоматизации – это совокупность объекта автоматизации и автоматических устройств, благодаря которым возможно управлять работой холодильных систем без участия обслуживающего персонала.

Виды систем автоматизации:

Разомкнутые системы – применяются редко, делятся на виды:

  • разомкнутая система автоматизации с прямой связью, в которой слежение идет по косвенному параметру (например, в системах вентиляции по температуре наружного воздуха);
  • разомкнутая система автоматизации с обратной связью, которая выполняет только информационные функции (измерение, сигнализация).

Замкнутые системы, принцип работы которых заключается в определении отклонения фактической величины регулирующего параметра от заданной. Именно такие системы автоматизации применяются для контроля работы холодильной установки . Виды замкнутых систем автоматизации:

  • системы автоматического регулирования, т.е. те, которые поддерживают параметры на заданном уровне;
  • системы автоматической защиты, т.е. те, которые автоматически выключают оборудование, когда его нормальная работа нарушается.

Основные части и приборы системы автоматизации холодильной установки

Основные части системы автоматизации холодильной установки :

  • измерительный (чувствительный) элемент, снабженный приспособлением для настройки управления холодильными параметрами на заданное значение;
  • датчик, который регистрирует изменение регулируемой величины;
  • холодильный щит управления , т.е. регулирующий орган, который по сигналу измерительного элемента изменяет подачу сигнала или энергии в регулируемый объект;
  • передаточное устройство, которое соединяет датчик с передаточным механизмом.

Щит управления холодильным агрегатом и устройствами автоматизации холодильной установки

Основным элементом, который контролирует приборы систем автоматизации холодильной установки, является щит управления холодильным агрегатом . На щите управления размещены устройства автоматического управления, регулирования и защиты, а также средства сигнализации, благодаря которым обеспечивается нормальное функционирование холодильной системы.

Приборы автоматического управления, размещенные на щите управления холодильным агрегатом , регулируют работу насосов и компрессоров при изменении нагрузки. При понижении температуры хладагента, а также при понижении давления в испарителях ниже предельного значения компрессоры автоматически останавливаются; при повышении температуры в испарителе компрессоры автоматически включаются. Иногда для автоматического управления компрессорами используется реле времени, которое программируют на определенное время включения агрегатов.

С помощью приборов автоматического регулирования на щите управления поддерживаются на оптимальном уровне ключевые параметры работы холодильной установки – температура и давление. При понижении тепловой нагрузки температура хладоносителя поддерживается на заданном уровне благодаря плавному автоматическому регулированию холодопроизводительности установки, которое может осуществляться такими путями:

  1. 1) дросселированием паров хладагента перед компрессором, в результате чего понижается давление;
  2. 2) перепуском части паров из нагнетательной линии во всасывающую;
  3. 3) увеличением мертвого пространства в поршневом компрессоре, в результате чего снижается отсос паров хладагента из испарителя.

С помощью приборов автоматического регулирования, которые изменяют подачу хладагента в испаритель, также обеспечивается безопасная работа компрессора и его защита от гидравлического удара.

Автоматическая сигнализация применяется для извещения оператора холодильной установки об изменении режима функционирования оборудования, которое может вызвать срабатывание автоматической защиты. Также автоматическая сигнализация звуковым сигналом извещает оператора о включении и выключении оборудования, арматуры и приборов.

Автоматическая защита холодильного оборудования позволяет избежать опасных последствий нарушения нормальных параметров работы холодильных машин. При резких изменениях параметров функционирования (сильном увеличении давления нагнетания, снижении давления и температуры испарения, несоблюдении режима работы смазочной системы, проверка холодильной системы и других ситуациях) специально предназначенные приборы отключают холодильные установки, предотвращая их поломку.



 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з