Жидкостные манометры, принцип действия, преимущества. Устройство жидкостных манометров Как работает открытый жидкостный манометр

В жидкостных манометрах измеряемое давление уравновешивается давлением столба жидкости.

Простейшие жидкостные манометры состоят из U-образной стеклянной трубки и прямолинейной шкалы с равномерными делениями.

Наименьшее деление шкалы 1 мм. Шкала обычно двусторонняя с нулевой отметкой посередине. Оба конца трубки заполнены жидкостью до нулевой отметки.


Принцип действия

При подводе давления к одному концу трубки жидкость перетекает и сквозь стекло видна разница в уровнях жидкости. Разность уровней, выраженная в миллиметрах, дает значение измеряемого давления.

Если в трубку налита ртуть, величина давления выразится в миллиметрах ртутного столба. давление манометр напоромер

При заполнении трубки водой давление будет измеряться в миллиметрах водяного столба.

В случае заполнения трубки другими жидкостями необходимо производить пересчет по удельному весу жидкости.

Так, например, для пересчета на миллиметры водяного столба нужно показания манометра с данной жидкостью умножить на удельный вес жидкости, при пересчете на миллиметры ртутного столба - умножить на удельный вес данной жидкости и разделить на удельный вес ртути 13,6.

Разница в диаметрах левой и правой частей трубки не влияет на результат измерения. Не обязательно также заполнять трубку жидкостью до уровня, точно совпадающего с нулевой отметкой на шкале, так как при отсчете показаний учитывается только разность уровней по количеству делений шкалы.

Жидкостный термометр - это прибор для измерения температуры технологических процессов при помощи жидкости, которая реагирует на изменение температуры. Жидкостные термометры хорошо всем известны в быту: для измерения комнатной температуры или температуры человеческого тела.

Жидкостные термометры состоят из пяти принципиальных частей, это: шарик термометра, жидкость, капиллярная трубка, перепускная камера, и шкала.

Шарик термометра - это часть, где помещается жидкость. Жидкость реагирует на изменение температуры поднимаясь или опускаясь по капиллярной трубке. Капиллярная трубка представляет собой узкий цилиндр по которому перемещается жидкость. Часто капиллярная трубка снабжена перепускной камерой, которая представляет собой полость, куда поступает избыток жидкости. Если не будет перепускной камеры, то после того, как капиллярная трубка наполнится, создастся достаточное давление для того, чтобы разрушить трубку, если температура будет и дальше повышаться. Шкала - это часть жидкостного термометра, с помощью которой снимаются показания. Шкала откалибрована в градусах. Шкала может быть закреплена на капиллярной трубке, либо она может быть подвижной. Подвижная шкала дает возможность ее регулировать.

Принцип работы жидкостного термометра


Принцип работы жидкостных термометров основан на свойстве жидкостей сжиматься и расширяться. Когда жидкость нагревается, то обычно она расширяется; жидкость в шарике термометра расширяется и двигается вверх по капиллярной трубке, тем самым показывая повышение температуры. И, наоборот, когда жидкость охлаждается, она обычно сжимается; жидкость в капиллярной трубке жидкостного термометра понижается и тем самым показывает понижение температуры. В случае, когда имеется изменение измеряемой температуры вещества, то происходит перенос теплоты: сначала от вещества, чья температура измеряется, к шарику термометра, а затем от шарика к жидкости. Жидкость реагирует на изменение температуры двигаясь вверх или вниз по капиллярной трубке.

Тип используемой жидкости в жидкостном термометре зависит от диапазона измеряемых термометром температур.

Ртуть , -39-600 °C (-38-1100 °F);
Сплавы ртути , -60-120 °C (-76-250 °F);
Спирт , -80-100 °C (-112-212 °F).

Жидкостные термометры с частичным погружением

Конструкция многих жидкостных термометров предполагает, что они будут висеть на стене, и вся поверхность термометра входит в соприкосновение с веществом, температура которого измеряется. Однако, некоторые виды промышленных и лабораторных жидкостных термометров сконструированы и откалиброваны таким образом, что предполагают их погружение в жидкость.

Из термометров, используемых таким образом наиболее широко применяются термометры с частичным погружением. Для того, чтобы получить точные показания с помощью термометра с частичным погружением, погружают его шарик и капиллярную трубку только до этой линии.

Термометры с частичным погружением погружаются до отметки для того, чтобы компенсировать изменения температуры окружающего воздуха, которые могут на жидкость, находящуюся внутри капиллярной трубки. Если изменения температуры окружающего воздуха (изменения температуры воздуха вокруг термометра) вероятны, то они могут вызвать расширение или сжатие жидкости внутри капиллярной трубки. В результате на показания будет влиять не только температура вещества, которая измеряется, но и температура окружающего воздуха. Погружение капиллярной трубки до отмеченной линии снимает воздействие температуры окружающего воздуха на точность показаний.

В условиях промышленного производства часто необходимо измерять температуры веществ, проходящих по трубам или находящихся в емкостях. Измерение температуры в этих условиях создает две проблемы для прибористов: как измерить температуру вещества, если нет непосредственного доступа к этому веществу или жидкости, и как вынимать жидкостный термометр для осмотра, проверки или замены не останавливая технологического процесса. Обе эти проблемы устраняются, если применять измерительные каналы для ввода термометров.

Измерительный канал для ввода термометра представляет собой канал в виде трубы, который закрыт с одного конца и открыт с другого. Измерительный канал предназначен для того, чтобы в него помещать шарик жидкостного термометра и таким образом оградить его от веществ, которые могут вызывать коррозию, отравляющих веществ, или под высоким давлением. Когда применяются измерительные каналы для ввода термометров, то теплообмен происходит в форме непрямого контакта (через измерительный канал) вещества, чья температура измеряется, и шариком термометра. Измерительные каналы представляют собой уплотнение для повышенного давления и предотвращают выход наружу жидкости, температура, которой измеряется.

Измерительные каналы делаются стандартных размеров, так что они могут использоваться с различными типами термометров. Когда термометр устанавливается в измерительный канал, то его шарик вставляется в канал, а поверх термометра накручивается гайка, чтобы закрепить термометр.

Манометр – это компактное механическое устройство для измерения давления. В зависимости от модификации оно может работать с воздухом, газом, паром или жидкостью. Существует много разновидностей манометров, по принципу снятия показаний давления в измеряемой среде, каждый из которых имеет свое применение.

Сфера использования
Манометры являются одним из самых распространенных приборов, которые можно встретить в различных системах:
  • Котлах отопления.
  • Газопроводах.
  • Водопроводах.
  • Компрессорах.
  • Автоклавах.
  • Баллонах.
  • Баллонных пневматических винтовках и т.д.

Внешне манометр напоминает невысокий цилиндр различного диаметра, чаще всего 50 мм, который состоит из металлического корпуса со стеклянной крышкой. Сквозь стеклянную часть просматривается шкала с отметками в единицах измерения давления (Бар или Па). Сбоку в корпус входит трубка с внешней резьбой для ввинчивания в отверстие системы, в которой необходимо провести измерение давления.

При нагнетании давление в измеряемой среде газ или жидкость сквозь трубку прижимает внутренний механизм манометра, что приводит к отклонению угла стрелки, которая указывает на шкалу. Чем выше создаваемое давление, тем больше отклоняется стрелка. Цифра на шкале, на которой остановится указатель, и будет соответствовать давлению в измеряемой системе.

Давление, которое может измерить манометр
Манометры являются универсальными механизмами, которые могут применяться для измерения различных значений:
  • Избытка давления.
  • Вакуумного давления.
  • Разницы давлений.
  • Атмосферного давления.

Применение этих приборов позволяет контролировать различные технологические процессы и предотвращать аварийные ситуации. Манометры предназначенные для эксплуатации в особых условиях могут иметь дополнительные модификации корпуса. Это может быть взрывозащищенность, устойчивость к коррозии или повышенной вибрации.

Разновидности манометров

Манометры используется во многих системах, где присутствует давление, которое должно находиться на четко заданном уровне. Применение прибора позволяет вести за ним контроль, поскольку недостаточное или избыточное воздействие может навредить различным технологическим процессам. Кроме этого, превышение нормы давления является причиной разрыва емкостей и труб. В связи с этим создано несколько разновидностей манометров рассчитанных под определенные условия работы.

Они бывают:
  • Образцовые.
  • Общетехнические.
  • Электроконтактные.
  • Специальные.
  • Самопишущие.
  • Судовые.
  • Железнодорожные.

Образцовый манометр предназначен для поверки другого подобного измерительного оборудования. Такие устройства определяют уровень избыточного давления в различных средах. Подобные приборы оснащены особо точным механизмом, дающим минимальную погрешность. Класс точности у них составляет от 0,05 до 0,2.

Общетехнические применяются в общих средах, которые не замерзают в лед. Такие приборы имеют класс точности от 1,0 до 2,5. Они устойчивы к вибрации, поэтому могут устанавливаться на транспорте и системах отопления.

Электроконтактные предназначены специально для контроля и предупреждения о достижении верхней отметки опасной нагрузки, способной разрушить систему. Такие приборы используются с различными средами, такими как жидкости, газы и пары. Данное оборудование имеет встроенный механизм управления электроцепями. При появлении избыточного давления манометр подает сигнал или механическим способом отключает снабжающее оборудование, нагнетающее давление. Также электроконтактные манометры могут включать специальный клапан, который сбрасывает давление до безопасного уровня. Такие приборы предотвращают аварии и взрывы на котельных.

Специальные манометры предназначены для работы с определенным газом. Такие приборы обычно имеют цветные корпуса, а не классические черные. Цвет соответствует газу, с которым может работать данный прибор. Также на шкале применяется специальная маркировка. К примеру, манометры для измерения давления аммиака, которые обычно устанавливается в промышленных холодильных установках, окрашены в желтый цвет. Подобное оборудование имеет класс точности от 1,0 до 2,5.

Самопишущие применяются в сферах, где требуется не только вести визуальный контроль за давлением системы, но и фиксировать показатели. Они пишут диаграмму, по которой можно просматривать динамику давления в любой промежуток времени. Подобные устройства можно встретить в лабораториях, а также на тепловых электростанциях, консервных заводах и прочих пищевых предприятиях.

Судовые включают широкий модельный ряд манометров, которые имеют защищенный корпус от атмосферного воздействия. Они могут работать с жидкостью, газом или паром. Имена их можно встретить на уличных газовых распределителях.

Железнодорожные манометры предназначены для контроля за избыточным давлением в механизмах, которые обслуживают рельсовый электротранспорт. В частности, их применяют на гидравлических системах, передвигающих рельсы при разведении стрелы. Подобные устройства имеют повышенную стойкость к вибрации. Они не только устойчиво переносят встряску, но при этом указатель на шкале не реагирует на механическое воздействие на корпус, точно отображая уровень давления в системе.

Разновидности манометров по механизму снятия показаний давления в среде
Манометры различаются и по внутреннему механизму, приводящему снятие показаний давления в системе, к которой подключаются. В зависимости от устройства они бывают:
  • Жидкостные.
  • Пружинные.
  • Мембранные.
  • Электроконтактные.
  • Дифференциальные.

Жидкостный манометр предназначен для измерения давление столба жидкости. Такие приборы работают по физическому принципу сообщающихся сосудов. Большинство устройств имеют видимый уровень рабочей жидкости, из которой они снимают показания. Эти приборы одни из редко используемых. В связи с контактом с жидкостью их внутренняя часть пачкается, поэтому постепенно прозрачность теряется, и визуально определить показания становится сложно. Жидкостные манометры были придуманы одними из самых первых, но еще встречаются.

Пружинные манометры самые часто встречаемые. Они имеют простую конструкцию, которая пригодна для ремонта. Пределы их измерения обычно составляют от 0,1 до 4000 Бар. Непосредственно сам чувствительный элемент такого механизма представляет собой трубку овального сечения, которая под действием давления ужимается. Давящая на трубку сила передается по специальному механизму на стрелку, которая проворачивается под определенным углом, указывая на шкалу с разметкой.

Мембранный манометр работает по физическому принципу пневматической компенсации. Внутри прибора имеется специальная мембрана, уровень прогиба которой зависит от воздействия создаваемого давлением. Обычно применяется две спаянных между собой мембран, образовывающих коробку. По мере изменения объема коробки чувствительный механизм отклоняет стрелку.

Электроконтактные манометры можно встретить в системах, которые автоматически контролируют давление и проводят его регулировку или сигнализируют о достижении критического уровня. В приборе имеется две стрелки, которые можно двигать. Одна устанавливается на минимальное давление, а вторая на максимальное. Внутри прибора вмонтированы контакты электрической цепи. Когда давление достигает одного из критических уровней, проводится замыкание электроцепи. В результате создается сигнал на пульт управлении или срабатывает автоматический механизм для экстренного сброса.

Дифференциальные манометры являются одними из самых сложных механизмов. Они работают по принципу измерения деформации внутри специальных блоков. Данные элементы манометра восприимчивы к давлению. По мере деформации блока специальный механизм передает изменения на стрелку, указывающую на шкалу. Движение указателя происходит до тех пор, пока перепады в системе не прекратятся и не остановятся на определенном уровне.

Класс точности и диапазон измерения

Любой манометр имеет технический паспорт, на котором указывается его класс точности. Показатель имеет цифровое выражение. Чем ниже цифра, тем прибор точнее. Для большинства приборов нормой является класс точности от 1,0 до 2,5. Они применяются в тех случаях, когда небольшое отклонение не имеет особого значения. Самую большую погрешность обычно дают приборы, которые используют автомобилисты для измерения давления воздуха в шинах. Их класс нередко опускается до отметки 4,0. Лучший класс точности имеют образцовые манометры, самые совершенные из них работают с погрешностью 0,05.

Каждый манометр рассчитан для работы в определенном диапазоне давления. Слишком мощные массивные модели не смогут зафиксировать минимальные колебания. Очень чувствительные устройства при избыточном воздействии выходят из строя или разрушаются, приводя к разгерметизации системы. В связи с этим при выборе манометра следует обращать внимание на этот показатель. Обычно на рынке можно найти модели, которые способны фиксировать перепады давления в пределах от 0,06 до 1000 мПА. Также существуют специальные модификации, так называемые тягомеры, которые предназначены для измерения разрежения давления до уровня -40 кПа.

Принцип действия основан на уравновешивании измеряемого давления или разности давлений давлением столба жидкости. Они имеют простое устр-во и высокую точность измерения, широко применяются как лабораторные и поверочные приборы. Жидкостные манометры подразделяются на: U-образные, колокольные и кольцевые.

U-образные. Принцип действия основан на законе сообщающихся сосудов. Они бывают двухтрубные (1) и чашечные однотрубные(2).

1) представляют собой стеклянную трубку 1, укрепленную на плате 3 со шкалой и залитую запорной жидкостью 2. Разность уровней в коленах пропорциональна измеряемому перепаду давления. «-»1.ряд погрешностей: вследствие неточности отсчета положения мениска, изменения Т окруж. среды, явлений капиллярности (устраняется введением поправок). 2. необходимость двух отсчетов, что приводит к увеличению погрешности.

2) предст. собой модификацию двухтрубных, но одно колено заменено на широкий сосуд (чашечку). Под действием избыточного давления уровень жидкости в сосуде снижается, а в трубке повышается.

Поплавковые U-образные дифманометры по принципу действия подобны чашечным, но для измерения давления в них используют перемещение поплавка, помещенного в чашку, при изменении уровня жидкости. По средством передаточного устройства перемещение поплавка преобразуется в перемещение показывающей стрелки. «+» широкий предел измерения. Принцип действия жидкостных манометров основан на законе Паскаля – измеряемое давление уравновешивается весом столба рабочей жидкости: P = ρgh . Состоят из резервуара и капилляра. В качестве рабочих жидкостей используются дистиллированная вода, ртуть, этиловый спирт. Применяются для измерений малых избыточных давлений и вакуума, барометрического давления. Они просты по конструкции, но отсутствует дистанционная передача данных.

Иногда для увеличения чувствительности капилляр располагают под некоторым углом к горизонту. Тогда: P = ρgL Sinα.

В деформационных манометрах исп-тся противодействие упругой деформации чувствительного элемента (ЧЭ) или развиваемой им силы. Различают три основные формы ЧЭ, получивших распространение в практике измерения: трубчатые пружины, сильфоны и мембраны.

Трубчатая пружина (манометрическая пружина, трубка Бурдона) – упругая металлическая трубка, один из концов которой запаян и имеет возможность перемещаться, а другой – жестко закреплен. Трубчатые пружины используются в основном для преобразования измеряемого давления, поданного во внутреннее пространство пружины, в пропорциональное перемещение ее свободного конца.

Наиболее распространена одновитковая трубчатая пружина, представляющая собой изогнутую на 270° трубку с овальным или эллиптическим поперечным сечением. Под влиянием поданного избыточного давления трубка раскручивается, а под действием разрежения скручивается. Такое направление перемещения трубки объясняется тем, что под влиянием внутреннего избыточного давления малая ось эллипса увелич., в то время как длина трубки остается постоян..

Основной недостаток рассмотренных пружин – малый угол поворота, что требует применения передаточных механизмов. С их помощью перемещение свободного конца трубчатой пружины на несколько градусов или миллиметров преобразуется в угловое перемещение стрелки на 270 – 300°.

Преимущество – близкая к линейной статическая характеристика. Основное применение – показывающие приборы. Диапазоны измерений манометров от 0 до 10 3 МПа; вакуумметров – от 0,1 до 0 МПа. Классы точности приборов: от 0,15 (образцовые) до 4.

Трубчатые пружины изготавливают из латуни, бронзы, нержавеющей стали.

Сильфоны . Сильфон – тонкостенный металлический стакан с поперечными гофрами. Дно стакана перемещается под действием давления или силы.

В пределах линейности статической характеристики сильфона отношение действующей на него силы к вызванной ею деформации остается постоян. и наз-тся жесткостью сильфона. Сильфоны изготовляют из бронзы различных марок, углеродистой стали, нержавеющей стали, алюминиевых сплавов и др. Серийно производят сильфоны диаметром от 8 –10 до 80 – 100 мм и толщиной стенки 0,1 – 0,3 мм.

Мембраны . Различают упругие и эластичные мембраны. Упругая мембрана – гибкая круглая плоская или гофрированная пластина, способная получить прогиб под действием давления.

Статическая характеристика плоских мембран изменяется нелинейно с увелич. давления, поэтому в качестве рабочего участка используют небольшую часть возможного хода. Гофрированные мембраны могут применяться при больших прогибах, чем плоские, так как имеют значительно меньшую нелинейность характеристики. Мембраны изготовляют из различных марок стали: бронзы, латуни и т. д.

ГОРЕЛКА ФОРКАМЕРНАЯ

Горелка форкамерная - устройство, состоящее из газового коллектора с отверстиями для выхода газа, моноблока с каналами и керамической огнеупорной форкамеры, размещаемых над коллектором, в которых происходят смешение газа с воздухом и горение газовоздушной смеси. Горелка форкамерная предназначена для сжигания природного газа в топках секционных чугунных котлов, сушилок и других тепловых установок, работающих с разрежением 10-30 Па. Горелки форкамерные располагают на поду топки, благодаря чему создаются хорошие условия для равномерного распределения тепловых потоков по длине топки. Горелки форкамерные могут работать на низком и среднем давлении газа. Горелка форкамерная состоит из газового коллектора (стальной трубы) с одним рядом отверстий для выхода газа. В зависимости от тепловой мощности горелка может иметь 1,2 или 3 коллектора. Над газовым коллектором на стальной раме установлен керамический моноблок, образующий ряд каналов (смесителей). Каждое газовое отверсгие имеет свой керамический смеситель. Газовые струм, истекал из отверстий коллектора, эжектируют 50-70% воздуха, необходимого дли горения, остальной воздух поступает за счет разрежения в топке. В результате эжекции интенсифицируется смесеобразование. В каналах смесь подогревается, и при выходе начинается ее горение. Из каналов горящая смесь поступает в форкамеру, в которой осуществляется сгорание 90-95% газа. Форкамеру изготовляют из шамотного кирпича; она имеет вид щели. Догорание газа происходит в топке. Высота факела - 0,6-0,9 м, козффециентом избытка воздуха а - 1,1...1,15.

Компенсаторы предназначены для смягчения (компенсации) температурных удлиннений газопроводов, для избежания разрыва труб, для удобства монтажа и демонтажа арматуры (фланцевой, задвижек).

Газопровод длиной 1 км усредненного диаметра при нагревании на 1 О С удлиняется на 12 мм.

Компенсаторы бывают:

· Линзовые;

· П-образные;

· Лирообразные.

Линзовый компенсатор имеет волнистую поверхность, которая меняет свою длину, в зависимости от температуры газопровода. Линзовый компенсатор изготавливают из штампованных полулинз сваркой.

Для уменьшения гидравлического сопротивления и предотвращения засорения внутри компенсатора установлен направляющий патрубок, приваренный к внутренней поверхности компенсатора со стороны входа газа.

Нижняя часть полулинз залита битумом для предупреждения скопления воды.

При монтаже компенсатора в зимнее время, его необходимо немного растянуть, а в летнее время – наоборот сжать стяжными гайками.


П-образныйЛирообразный

компенсатор.компенсатор.

Изменения температуры среды, окружающей газопровод, вызывают изменения длины газопровода. Для прямолинейного участка стального газопровода длиной 100 м удлинение или укорачивание при изменении температуры на 1° составляет около 1,2 мм. Поэтому на всех газопроводах после задвижек, считая по ходу газа, обязательно устанавливают линзовые компенсаторы (рис. 3). Кроме того, в процессе эксплуатации наличие линзового компенсатора облегчает монтаж и демонтаж задвижек.

При проектировании и строительстве газопроводов стремятся к тому, чтобы снизить количество устанавливаемых компенсаторов путем максимального использования самокомпенсации груб - изменением направления трассы как в плане, так и в профиле.

Рис. 3. Линзовый компенсатор 1 - фланец; 2-патрубок; 3 -рубашка; 4 - полулинза; 5 -лапа; 6 - ребро; 7 - тяга; 8 - гайка

Принцип действия жидкостного манометра

В исходном положении вода в трубках будет находиться на одном уровне. Если же на резиновую пленку будет оказываться давление, то уровень жидкости в одном колене манометра понизится, а в другом, следовательно, повысится.

Это показано на рисунке выше. Мы давим на пленку пальцем.

Когда мы надавливаем на пленку, давление воздуха, который находится в коробочке, увеличивается. Давление передается по трубке и доходит до жидкости, при этом вытесняя её. При понижении уровня в этом колене, уровень жидкости в другом колене трубки, будет увеличиваться.

По разности уровней жидкости, можно будет судить о разности атмосферного давления и того давления, что оказывается на пленку.

На следующем рисунке показано, как с помощью жидкостного манометра измерить давление в жидкости на различной глубине.

Мембранный манометр

В мембранном манометре упругим элементом является мембрана, представляющая собой гофрированную металлическую пластинку. Прогиб пластинки под давлением жидкости передается через передаточный механизм стрелке прибора, скользящей по шкале. Мембранные приборы применяются для измерения давления до 2,5 МПа, а также для измерения вакуума. Иногда используют приборы с электрическим выходом, у которых на выход поступает электрический сигнал, пропорциональный давлению на входе манометра.



 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з