Можно ли двигаться со скоростью света. Возможен ли сверхсветовой полёт? Открытые вопросы сверхсветовых путешествий

Скорость больше скорости света в вакууме - это реальность. Теория относительности Эйнштейна запрещает лишь сверхсветовую передачу информации. Поэтому есть довольно много случаев, когда объекты могут двигаться быстрее света и ничего при этом не нарушать. Начнем с теней и солнечных зайчиков.

Если создать на далекой стене тень от пальца, на который светите фонариком, а потом пальцем пошевелите, то тень задвигается гораздо быстрее пальца. Если стена расположена очень далеко, то движение тени будет отставать от движения пальца, так как свет должен будет еще долететь от пальца до стены, но все равно скорость движения тени будет во столько же раз больше. То есть, скорость движения тени не ограничена скоростью света.

Кроме теней быстрее света могут двигаться и «солнечные зайчики». Например, пятнышко от лазерного луча, направленного на Луну. Расстояние до Луны 385 000 км. Если слегка поводить лазером сдвинув его едва лишь на 1 см, то он успеет пробежать Луну со скоростью примерно на треть больше световой.

Подобные вещи могут происходить и в природе. Например, световой луч от пульсара, нейтронной звезды, может прочесывать облако пыли. Яркая вспышка порождает расширяющееся оболочку из света или другого излучения. Когда она пересекает поверхность облака, то создается световое кольцо, увеличивающееся быстрее скорости света.

Все это примеры вещей, движущихся быстрее света, но которые не являлись физическими телами. При помощи тени или зайчика нельзя передать сверхсветовое сообщение, так что и общение быстрее света не получается.

А вот уже пример, который связан с физическими телами. Забегая вперед, скажем, что опять же сверхсветовых сообщений не получится.

В системе отсчёта, связанной с вращающимся телом, удалённые объекты могут двигаться со сверхсветовой скоростью. Например, Альфа Центавра в системе отсчёта, связанной с Землёй, движется со скоростью, более чем в 9600 раз превышающей скорость света, «проходя» расстояние около 26 световых лет в сутки. И точно такой же пример с Луной. Встаньте к ней лицом и повернитесь вокруг своей оси за пару секунд. За это время она повернулась вокруг вас на примерно на 2,4 миллиона километров, то есть в 4 раза быстрее скорости света. Ха-ха, скажете вы, так это ж не она вертелась, а я…А вспомните, что в теории относительности все системы отсчета независимы, включая и вращающиеся. Так что, с какой стороны еще посмотреть…

И что же делать? Ну на самом деле, никаких противоречий здесь нет, ведь опять же, это явление не может быть использовано для сверхсветовой передачи сообщений. Кроме того заметьте, в своей окрестности Луна не превышает скорости света. А именно на превышение локальной скорости света все запреты и накладываются в общей теории относительности.

Скорость света — одна из универсальных физических констант, она не зависит от выбора инерциальной системы отсчета и описывает свойства пространства-времени в целом. Скорость света в вакууме равна 299 792 458 метров в секунду, и это предельная скорость движения частиц и распространения взаимодействий. Так учат нас школьные книги по физике. Еще можно вспомнить о том, что масса тела как раз не является постоянной и при приближении скорости к скорости света стремится к бесконечности. Именно поэтому со скоростью света движутся фотоны — частицы без массы, а частицам с массой это значительно труднее.

Однако международный коллектив ученых масштабного эксперимента OPERA, расположенного недалеко от Рима, готов поспорить с азбучной истиной.

Ему удалось обнаружить нейтрино, которые, как показали эксперименты, движутся со скоростью больше скорости света,

сообщает пресс-служба Европейской организации ядерных исследований (CERN).

Эксперимент OPERA (Oscillation Project with Emulsion-tRacking Apparatus) изучает самые инертные частицы Вселенной — нейтрино. Они настолько инертны, что могут пролететь насквозь через весь Земной шар, звезды и планеты, а для того, чтобы они ударились в преграду из железа, размер этой преграды должен быть от Солнца до Юпитера. Каждую секунду через тело каждого человека на Земле проходит порядка 10 14 нейтрино, испущенных Солнцем. Вероятность того, что хотя бы одно из них ударится в ткани человека на протяжении всей его жизни, стремится к нулю. По этим причинам регистрировать и изучать нейтрино чрезвычайно трудно. Лаборатории, которые этим занимаются, находятся глубоко под горами и даже подо льдами Антарктиды.

OPERA получает пучок нейтрино из CERN, где находится Большой адронный коллайдер. Его «младший брат» — суперпротонный синхротрон (SPS) — направляет пучок прямо под землей в сторону Рима. Получаемый пучок нейтрино проходит сквозь толщу земной коры, тем самым очищаясь от других частиц, которые вещество коры задерживает, и попадает прямиком в лабораторию в Гран-Сассо, укрытую под 1200 м скалы.

Подземный путь в 732 км нейтрино преодолевают за 2,5 миллисекунды.

Детектор проекта OPERA, состоящий из примерно 150 тысяч элементов и весящий 1300 т, «ловит» нейтрино и изучает их. В частности, основной целью является изучение так называемых нейтринных осцилляций — переходов из одного типа нейтрино в другой.

Ошеломляющие результаты о превышении скорости света подкреплены серьезной статистикой: лаборатория в Гран-Сассо наблюдала около 15 тыс. нейтрино. Ученые выяснили, что

нейтрино движутся со скоростью, на 20 миллионных долей превышающей скорость света — «непогрешимый» предел скорости.

Этот результат стал для них неожиданностью, его объяснения пока не предложено. Естественно, для его опровержения или подтверждения требуются независимые эксперименты, проведенные другими группами на другом оборудовании, — этот принцип «двойного слепого контроля» реализован и на Большом адронном коллайдере CERN. Коллаборация OPERA незамедлительно опубликовала свои результаты, чтобы дать возможность коллегам по всему миру проверить их. Детальное описание работ доступно на сайте препринтов Arxiv.Org .

Официальное представление результатов состоится сегодня на семинаре в CERN в 18.00 по Москве, будет вестись онлайн-трансляция .

«Эти данные стали полной неожиданностью. После месяцев сбора, анализа и очистки данных, а также перекрестных проверок мы не нашли ни в алгоритме обработке данных, ни в детекторе возможного источника системной ошибки. Поэтому мы публикуем наши результаты, продолжаем работу, а также надеемся, что независимые измерения других групп помогут понять природу этого наблюдения», — заявил руководитель эксперимента OPERA Антонио Эредитато из Университета Берна, слова которого приводит пресс-служба CERN.

«Когда ученые-экспериментаторы обнаруживают некий неправдоподобный результат и не могут найти артефакта, который бы его объяснял, они обращаются к своим коллегам из других групп, чтобы началось более широкое исследование вопроса. Это хорошая научная традиция, и коллаборация OPERA сейчас следует ей.

Если наблюдения превышения скорости света подтвердятся, это может изменить наше понимание физики, но мы должны удостовериться в том, что они не имеют другого, более банального объяснения.

Для этого и нужны независимые эксперименты», — заявил научный директор CERN Серджо Бертолуччи.

Проводимые в OPERA измерения чрезвычайно точны. Так, расстояние от точки пуска нейтрино до точки их регистрации (более 730 км) известно с точностью до 20 см, а время пролета измеряется с точностью до 10 наносекунд.

Эксперимент OPERA работает с 2006 года. В нем принимают участие примерно 200 физиков из 36 институтов и 13 стран, в том числе и из России.

Посвященная прямому измерению скорости движения нейтрино. Результаты звучат сенсационно: скорость нейтрино оказалась слегка - но статистически достоверно! - больше скорости света. Статья коллаборации содержит анализ разнообразных источников погрешностей и неопределенностей, однако реакция подавляющего большинства физиков остается очень скептической, прежде всего потому, что такой результат не согласуется с другими экспериментальными данными по свойствам нейтрино.


Рис. 1.

Подробности эксперимента

Идея эксперимента (см. OPERA experiment) очень проста. Нейтринный пучок рождается в ЦЕРНе, летит сквозь Землю в итальянскую лабораторию Гран-Сассо и проходит там сквозь специальный нейтринный детектор OPERA. Нейтрино очень слабо взаимодействуют с веществом, но из-за того, что их поток из ЦЕРНа очень велик, некоторые нейтрино всё же сталкиваются с атомами внутри детектора. Там они порождают каскад заряженных частиц и тем самым оставляют в детекторе свой сигнал. Нейтрино в ЦЕРНе рождаются не непрерывно, а «всплесками», и если мы знаем момент рождения нейтрино и момент его поглощения в детекторе, а также расстояние между двумя лабораториями, мы можем вычислить скорость движения нейтрино.

Расстояние между источником и детектором по прямой составляет примерно 730 км и измерено оно с точностью 20 см (точное расстояние между реперными точками составляет 730 534,61 ± 0,20 метров). Правда, процесс, приводящий к рождению нейтрино, вовсе не локализован с такой точностью. В ЦЕРНе пучок протонов высокой энергии вылетает из ускорителя SPS, сбрасывается на графитовую мишень и порождает в ней вторичные частицы, в том числе мезоны. Они по-прежнему летят вперед с околосветовой скоростью и на лету распадаются на мюоны с испусканием нейтрино. Мюоны тоже распадаются и порождают дополнительные нейтрино. Затем все частицы, кроме нейтрино, поглощаются в толще вещества, а те беспрепятственно долетают до места детектирования. Общая схема этой части эксперимента приведена на рис. 1.

Весь каскад, приводящий к появлению нейтринного пучка, может растянуться на сотни метров. Однако поскольку все частицы в этом сгустке летят вперед с околосветовой скоростью, для времени детектирования нет практически никакой разницы, родилось нейтрино сразу или через километр пути (однако имеет большое значение, когда именно тот исходный протон, который привел к рождению данного нейтрино, вылетел из ускорителя). В результате рожденные нейтрино по большому счету просто повторяют профиль исходного протонного пучка. Поэтому ключевым параметром здесь является именно временной профиль пучка протонов, вылетающих из ускорителя, в особенности - точное положение его переднего и заднего фронтов, а этот профиль измеряется с хорошим временны м разрешением (см. рис. 2).

Каждый сеанс сброса протонного пучка на мишень (по-английски такой сеанс называется spill , «выплеск») длится примерно 10 микросекунд и приводит к рождению огромного числа нейтрино. Однако практически все они пролетают Землю (и детектор) насквозь без взаимодействия. В тех же редких случаях, когда детектор всё-таки регистрирует нейтрино, невозможно сказать, в какой именно момент в течение 10-микросекундного интервала оно было испущено. Анализ можно провести лишь статистически, то есть накопить много случаев детектирования нейтрино и построить их распределение по временам относительно момента начала отсчета для каждого сеанса. В детекторе за начало отсчета принимается тот момент времени, когда условный сигнал, движущийся со скоростью света и излученный ровно в момент переднего фронта протонного пучка, достигает детектора. Точное измерение этого момента стало возможно благодаря синхронизации часов в двух лабораториях с точностью в несколько наносекунд.

На рис. 3 показан пример такого распределения. Черные точки - это реальные нейтринные данные, зарегистрированные детектором и просуммированные по большому числу сеансов. Красная кривая показывает условный «опорный» сигнал, который двигался бы со скоростью света. Видно, что данные начинаются примерно на 1048,5 нс раньше опорного сигнала. Это, впрочем, еще не означает, что нейтрино действительно на микросекунду опережает свет, а является лишь поводом для того, чтобы тщательно перемерить все длины кабелей, скорости срабатывания аппаратуры, времена задержки электроники и так далее. Эта перепроверка была выполнена, и оказалось, что она смещает «опорный» момент на 988 нс. Таким образом, получается, что нейтринный сигнал действительно обгоняет опорный, но лишь примерно на 60 наносекунд. В пересчете на скорость нейтрино это отвечает превышению скорости света примерно на 0,0025%.

Погрешность этого измерения была оценена авторами анализа в 10 наносекунд, что включает в себя и статистическую, и систематическую погрешности. Таким образом, авторы утверждают, что они «видят» сверхсветовое движение нейтрино на уровне статистической достоверности в шесть стандартных отклонений.

Отличие результатов от ожиданий на шесть стандартных отклонений уже достаточно велико и называется в физике элементарных частиц громким словом «открытие». Однако надо правильно понимать это число: оно лишь означает, что вероятность статистической флуктуации в данных очень мала, но не говорит о том, насколько надежна методика обработки данных и насколько хорошо физики учли все инструментальные погрешности. В конце концов, в физике элементарных частиц имеется немало примеров, когда необычные сигналы с исключительно большой статистической достоверностью не подтверждались другими экспериментами.

Чему противоречат сверхсветовые нейтрино?

Вопреки широко распространенному мнению, специальная теория относительности не запрещает само по себе существование частиц, движущихся со сверхсветовой скоростью. Однако для таких частиц (их обобщенно называют «тахионы») скорость света тоже является пределом, но только снизу - они не могут двигаться медленнее нее. При этом зависимость энергии частиц от скорости получается обратной: чем больше энергия, тем ближе скорость тахионов к скорости света.

Гораздо более серьезные проблемы начинаются в квантовой теории поля. Эта теория приходит на смену квантовой механике, когда речь идет про квантовые частицы с большими энергиями. В этой теории частицы - это не точки, а, условно говоря, сгустки материального поля, и рассматривать их отдельно от поля нельзя. Оказывается, что тахионы понижают энергию поля, а значит, делают вакуум нестабильным. Пустоте тогда выгоднее спонтанно рассыпаться на огромное число этих частиц, и потому рассматривать движение одного тахиона в обычном пустом пространстве просто бессмысленно. Можно сказать, что тахион - это не частица, а нестабильность вакуума.

В случае тахионов-фермионов ситуация несколько сложнее, но и там тоже возникают сравнимые трудности, мешающие созданию самосогласованной тахионной квантовой теории поля, включающей обычную теорию относительности.

Впрочем, это тоже не последнее слово в теории. Так же, как экспериментаторы измеряют всё, что поддается измерению, теоретики тоже проверяют все возможные гипотетические модели, которые не противоречат имеющимся данным. В частности, существуют теории, в которых допускается небольшое, не замеченное пока отклонение от постулатов теории относительности - например, скорость света сама по себе может быть переменной величиной. Прямой экспериментальной поддержки у таких теорий пока нет, но они пока и не закрыты.

Под этой краткой зарисовкой теоретических возможностей можно подвести такой итог: несмотря на то что в некоторых теоретических моделях движение со сверхсветовой скоростью возможно, они остаются исключительно гипотетическими конструкциями. Все имеющиеся на сегодня экспериментальные данные описываются стандартными теориями без сверхсветового движения. Поэтому если бы оно достоверно подтвердилось хоть для каких-нибудь частиц, квантовую теорию поля пришлось бы кардинально переделывать.

Стоит ли считать результат OPERA в этом смысле «первой ласточкой»? Пока нет. Пожалуй, самым главным поводом для скепсиса остается тот факт, что результат OPERA не согласуется с другими экспериментальными данными по нейтрино.

Во-первых, во время знаменитой вспышки сверхновой SN1987A были зарегистрированы и нейтрино, которые пришли за несколько часов до светового импульса. Это не означает, что нейтрино шли быстрее света, а лишь отражает тот факт, что нейтрино излучаются на более раннем этапе коллапса ядра при вспышке сверхновой, чем свет. Однако раз нейтрино и свет, проведя в пути 170 тысяч лет, не разошлись более, чем на несколько часов, значит, скорости у них очень близки и различаются не более чем на миллиардные доли. Эксперимент же OPERA показывает в тысячи раз более сильное расхождение.

Тут, конечно, можно сказать, что нейтрино, рождающиеся при вспышках сверхновых, и нейтрино из ЦЕРНа сильно различаются по энергии (несколько десятков МэВ в сверхновых и 10–40 ГэВ в описываемом эксперименте), а скорость нейтрино меняется в зависимости от энергии. Но это изменение в данном случае работает в «неправильную» сторону: ведь чем выше энергия тахионов, тем ближе их скорость должна быть к скорости света. Конечно, и тут можно придумать какую-то модификацию тахионной теории, в которой эта зависимость была бы совсем другой, но в таком случае придется уже обсуждать «дважды-гипотетическую» модель.

Далее, из множества экспериментальных данных по нейтринным осцилляциям, полученным за последние годы, следует, что массы всех нейтрино отличаются друг от друга лишь на доли электронвольта. Если результат OPERA воспринимать как проявление сверхсветового движения нейтрино, то тогда величина квадрата массы хотя бы одного нейтрино будет порядка –(100 МэВ) 2 (отрицательный квадрат массы - это и есть математическое проявление того, что частица считается тахионом). Тогда придется признать, что все сорта нейтрино - тахионы и обладают примерно такой массой. С другой стороны, прямое измерение массы нейтрино в бета-распаде ядер трития показывает, что масса нейтрино (по модулю) не должна превышать 2 электронвольта. Иными словами, все эти данные согласовать друг с другом не удастся.

Вывод отсюда можно сделать такой: заявленный результат коллаборации OPERA трудно вместить в какие-либо, даже в самые экзотические теоретические модели.

Что дальше?

Во всех больших коллаборациях в физике элементарных частиц нормальной практикой является ситуация, когда каждый конкретный анализ выполняется небольшой группой участников, и лишь затем результаты выносятся на общее обсуждение. В данном случае, по-видимому, этот этап был слишком кратким, в результате чего далеко не все участники коллаборации согласились подставить свою подпись под статьей (полный список насчитывает 216 участников эксперимента, а у препринта имеется лишь 174 автора). Поэтому в ближайшее время, по всей видимости, внутри коллаборации будет проведено множество дополнительных проверок, и только после этого статья будет послана в печать.

Конечно, сейчас можно ожидать и поток теоретических статей с разнообразными экзотическими объяснениями этого результата. Однако пока заявленный результат не будет надежно перепроверен, считать его полноправным открытием нельзя.

Но оказалось, что можно; теперь считают, что мы никогда не сомжем путешествовать быстрее света... ". Но на самом деле это неправда, что кто-то когда-то считал, что двигаться быстрее звука невозможно. Задолго до того, как появились сверхзвуковые самолеты уже было известно, что быстрее звука летят пули. Реально же речь шла о том, что невозможен управляемый сверхзвуковой полет, и ошибка была в этом. СС движение - это совсем другое дело. С самого начала было ясно, что сверхзвуковому полету препятствуют технические проблемы, которые надо было просто решить. Но совершенно неясно, можно ли когда-нибудь будет решить проблемы, препятствующие СС движению. Теория относительности может много чего сказать на этот счет. Если будет возможно СС путешествие или даже передача сигнала, то будет нарушена причинность, а из этого последуют совершенно невероятные выводы.

Сначала мы обсудим простые случаи СС движения. Мы упоминаем их не потому, что они интересны, а потому, что они снова и снова всплывают в обсуждениях СС движения и потому с ними приходится иметь дело. Потом мы обсудим то, что мы считаем сложными случаями СС движения или общения и рассмотрим некоторые доводы против них. Наконец, мы рассмотрим наиболее серьезные предположения о настоящем СС движении.

Простое СС движение

1. Явление черенковского излучения

Один способ двигаться быстрее света состоит в том, чтобы сперва замедлить сам свет! :-) В вакууме свет летит со скоростью c , и эта величина является мировой постоянной (см. вопрос Постоянна ли скорость света), а в более плотной среде вроде воды или стекла - замедляется до скорости c/n , где n - это показатель преломления среды (1,0003 у воздуха; 1,4 у воды). Поэтому частицы могут двигаться в воде или воздухе быстрее, чем там движется свет. В результате возникает излучение Вавилова-Черенкова (см. вопрос ).

Но когда мы говорим о СС движении, мы, конечно, имеем в виду превышение над скоростью света в вакууме c (299 792 458 м/с). Поэтому явление Черенкова не может считаться примером СС движения.

2. С третьей стороны

Если ракета А летит от меня со скоростью 0,6c на запад, а другая Б - от меня со скоростью 0,6c на восток, то тогда общее расстояние между А и Б в моей системе отсчета увеличивается со скоростью 1,2c . Таким образом, видимая относительная скорость, большая c, может наблюдаться "с третьей стороны".

Однако такая скорость - это не то, что мы обычно понимаем под относительной скоростью. Настоящая скорость ракеты А относительно ракеты Б - это та скорость роста расстояния между ракетами, которую наблюдает наблюдатель в ракете Б . Две скорости надо сложить по релятиви стской формуле сложения скоростей (см. вопрос Как надо складывать скорости в частной относительности). В данном случае относительная скорость получается примерно 0,88c , то есть, не является сверхсветовой.

3. Тени и зайчики

Подумайте, с какой скоростью может двигаться тень? Если Вы создадите на далекой стене тень от своего пальца от близкой лампы, а потом пальцем пошевелите, то тень задвигается гораздо быстрее пальца. Если палец будет смещаться параллельно стене, то скорость тени будет в D/d раз больше скорости пальца, где d - расстояние от пальца до лампы, а D - расстояние от лампы до стены. А может получиться и еще большая скорость, если стена будет расположена под углом. Если стена расположена очень далеко, то движение тени будет отставать от движения пальца, так как свет должен будет еще долететь от пальца до стены, но все равно скорость движения тени будет во столько же раз больше. То есть, скорость движения тени не ограничена скоростью света.

Кроме теней быстрее света могут двигаться и зайчики, например, пятнышко от лазерного луча, направленного на Луну . Зная, что расстояние до Луны 385 000 км., попробуйте рассчитать скорость движения зайчика если слегка поводить лазером. Еще можете подумать о морской волне, косо ударяющей о берег. С какой скоростью может двигаться точка, в которй волна разбивается?

Подобные вещи могут происходить и в природе. Например, световой луч от пульсара может прочесывать облако пыли. Яркая вспышка порождает расширяющееся оболочку из света или другого излучения. Когда она пересекает поверхность, то создается световое кольцо, увеличивающееся быстрее скорости света. В природе такое встречается, когда электромагнитный импульс от молнии достигает верхних слоев атмосферы .

Все это были примеры вещей, движущихся быстрее света, но которые не являлись физическими телами. При помощи тени или зайчика нельзя передать СС сообщение, так что и общение быстрее света не получается. И опять-таки, это, видимо, не то, что мы хотим понимать под СС движением, хотя становится понятно, насколько трудно определить, что именно нам нужно (см. вопрос Сверхсветовые ножницы).

4. Твердые тела

Если взять длинную твердую палку и толкнуть один ее конец, задвигается ли другой конец сразу же, или нет? Нельзя ли таким образом осуществить СС передачу сообщения?

Да, это было бы можно сделать, если бы такие твердые тела существовали. В реальности же влияние удара по концу палки распространяется по ней со скоростью звука в данном веществе, а скорость звука зависит от упругости и плотности материала. Относительность накладывает абсолютный предел возможной твердости любых тел так, что скорость звука в них не может превышать c .

То же самое происходит и в случае, если вы нахидитесь в поле притяжения, и сначала держите вертикально струну или шест за верхний конец, а потом отпускаете его. Точка, которую вы отпустили, придет в движение сразу, а нижний конец не сможет начать падать до тех пор, пока до него со скоростью звука не дойдет влияние отпускания.

Сложно сформулировать общую теор ию упругих материалов в рамках относительности, но основную идею можно показать и на примере механики Ньютона . Уравнение продольного движения идеально упругого тела можно получить из закона Гука . В переменных массы на единицу длины p и модуля упругости Юнга Y , продольное смещение X удовлетворяет волновому уравнению.

Решение в виде плоских волн двигается со скоростью звука s , причем s 2 = Y/p . Данное уравнение не предполагает возможность причинностного влияния, распространяющегося быстрее s . Таким образом, относительность накладывает теор етический предел на величину упругости: Y < pc 2 . Практически же не встречаются материалы, даже близко подходящие к нему. Кстати, даже если скорость звука в материале близка к c , вещество само по себе вовсе не обязано двигаться с релятиви стской скоростью. Но откуда мы знаем, что в принципе не может существовать вещества, преодолевающего этот предел? Ответ заключается в том, что все вещества состоят из частиц, взаимодействие между которыми подчиняется стандартной модели элементарных частиц, а в этой модели никакое взаимодействие распространяться быстрее света не может (смотри ниже насчет квантовой теор ии поля).

5. Фазовая скорость

Посмотрите на это волновое уравнение:

У него есть решения вида:

Эти решения есть синусоидальные волны, движущиеся со скоростью,

Но ведь это быстрее света, значит у нас в руках уравнение тахионного поля? Нет, это всего лишь обычное релятиви стское уравнение массивной скалярной частицы!

Парадокс разрешится, если понять различие между этой скоростью, называемой также фазовой скоростью v ph от другой скорости, называемой групповой v gr которая датеся формулой,

Если у волнового решения есть разброс частот, то оно приобретет вид волнового пакета , который движется с групповой сокростью, не превышающей c . Только гребни волны движутся с фазовой скоростью. Передавать информацию при помощи такой волны можно лишь с групповой скоростью, так что фазовая скорость дает нам очередной пример сверхсветовой скорости, которая не может переносить информацию.

7. Релятивистская ракета

Диспетчер на Земле следит за космическим кораблем, улетающим со скоростью 0,8c . Согласно теор ии относительности, даже после учета допплеровского сдвига сигналов от корабля, он увидит, что время на корабле замедлено и часы там идут медленнее с коэффициентом 0,6. Если он рассчитает частное от деления расстояния, пройденного кораблем на затраченное время, измеренное по часам корабля, то он получит 4/3c . Это означает, что пассажиры корабля преодолевают межзвездное пространство с эффективной скоростью, большей, чем скорость света, которую они бы получили, если бы ее измерили. С точки зрения пассажиров корабля, межзвездные расстояния подвержены лоренцеву сокращению с тем же коэффициентом 0,6 и значит, они тоже должны признать, что они покрывают известные межзвездные расстояния со скоростью 4/3 c .

Это реальное явление и оно в принципе может быть использовано космическими путешественниками для преодоления огромных расстояний в течение жизни. Если они будут ускоряться с постоянным ускорением, равным ускорению свободного падения на Земле , то у них на корабле будет не только идеальная искусственная сила тяжести , но они еще успеют пересечь Галактику всего за 12 своих лет! (см. вопрос Каковы уравнения релятиви стской ракеты ?)

Однако, и это - не настоящее СС движение. Эффективная скорость вычислена из расстояния в одной системе отсчета, а времени - в другой. Это не настоящая скорость. Только пассажиры корабля получают преимущества от этой скорости. Диспечер же, например, не успеет за свою жизнь увидеть, как они пролетят гигантское расстояние.

Сложные случаи СС движения

9. Парадокс Эйнштейна, Подольского, Розена (ЭПР)

10. Виртуальные фотоны

11. Квантовое туннелирование

Реальные кандидаты в СС путешественники

В данном разделе приведены умозрительные, но серьезные предположения о возможности сверхсветового путешествия. Это будут не те вещи, которые обычно помещают в ЧаВо, так как они вызывают больше вопросов, чем дают ответов. Они приведены здесь в основном для того, чтобы показать, что в данном направлении проводятся серьезные исследования. В каждом направлении дается лишь краткое введение. Более подробные сведения можно почерпнуть на просторах интернета.

19. Тахионы

Тахионы - это гипотетические частицы, которые локально движутся быстрее света. Чтобы это делать, у них должна быть масса, измеряемая мнимым числом, но их энерги я и импульс должны быть положительными. Иногда думают, что такие СС частицы должно быть невозможно засечь, но на самом деле, причин так считать нет. Тени и зайчики подсказывают нам, что из СС движения еще не следует незаметность.

Тахионы никогда не наблюдались и большинство физиков сомневаются в их существовании. Как-то заявлялось, что проведены опыты по измерению массы нейтрино, вылетающих при распаде Трития, и что эти нейтрино были тахионными. Это весьма сомнительно, но все-таки не исключено. В тахионных теор иях есть проблемы, так как с точки зрения возможных нарушений причинности, они дестабилизируют вакуум. Может и можно эти проблемы обойти, но тогда окажется невозможно применять тахионы в нужном нам СС сообщении.

Правда состоит в том, что большинство физиков считают тахионы признаком ошибки в полевых теор их, а интерес к ним со стороны широких масс подогревается, в основном, со стороны научной фантастики (см. статью Тахионы).

20. Чревоточины

Наиболее известной предположительной возможностью СС путешествия является использование чревоточин. Чревоточины - это туннели в пространстве-времени, соединяющие одно место во Вселенной, с другим. По ним можно переместиться между этими точками быстрее, чем сделал бы свет своим обычным путем. Чревоточины - это явление классической общей относительности, но чтобы их создать, нужно изменить топологию пространства-времени. Возможность этого может быть заключено в теор ии квантовой гравитации.

Чтобы поддерживать чревоточины в открытом состоянии, нужны огромные количества отрицательной энерги и. Миснер и Торн предложили, что для генерации отрицательной энерги и можно использовать крупномасштабный эффект Казимира, а Виссер предложил решение с использованием космических струн. Все эти идеи весьма умозрительны и могут быть попросту нереальными. Необычное вещество с отрицательной энерги ей может не существовать в нужной для явления форме.

Торн обнаружил, что если чревоточины можно создать, то с их помощью можно организовать замкнутые временные петли, которые сделают возможными путешествия во времени. Также было сделано предположение, что многовариантная интерпретация квантовой механики свидетельствует о том, что никаких парадоксов путешествие во времени не вызовет, и что события просто развернутся иначе, когда вы попадете в прошлое. Хокинг говорит, что чревоточины могут просто нестабильными и потому неприменимыми на практике. Но сама тема остается плодотворной областью для мысленных экспериментов, позволяющих разобраться, что возможно и что не возможно исходя и известных и предполагаемых законов физики.
refs:
W. G. Morris and K. S. Thorne, American Journal of Physics 56 , 395-412 (1988)
W. G. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Letters 61 , 1446-9 (1988)
Matt Visser, Physical Review D39 , 3182-4 (1989)
see also "Black Holes and Time Warps" Kip Thorn, Norton & co. (1994)
For an explanation of the multiverse see, "The Fabric of Reality" David Deutsch, Penguin Press.

21. Двигатели-деформаторы

[Понятие не имею, как это перевести! В оригинале warp drive. - прим. переводчика;
перевёл по аналогии со статьей на Мембране
]

Деформатор мог бы быть механизмом для закручивания пространства-времени таким образом, чтобы объект мог перемещаться быстрее света. Мигель Алькабьер сделался знаменитым благодаря тому, что разработал геометрию, которая описывает такой деформатор. Искажение пространства-времени делает возможным для объекта перемещаться быстрее света, оставаясь на время-подобной кривой. Препятствия те же, что и при создании чревоточин. Чтобы создать деформатор, нужно вещество с отрицательной плотностью энерги и. Даже если такое вещество возможно, все равно непонятно, как его можно получить и как с его помощью заставить работать деформатор.
ref M. Alcubierre, Classical and Quantum Gravity, 11 , L73-L77, (1994)

Заключение

Во-первых, оказалось нелегко вообще определить, что значит СС путешествие и СС сообщение. Многие вещи, навроде теней, совершают СС дивжение, но так, что его нельзя использовать, например, для передачи информации. Но есть и серьезные возможности реального СС перемещения, которые предложены в научной литературе, но их реализация пока невозможна технически. Принцип неопределенности Гейзенберга делает невозможным использование кажущегося СС движения в квантовой механике. В общей относительности есть потенциал ьные средства СС движения, но их может быть невозможно использовать. Думается, что крайне маловероятно, что в обозримом будущем, или вообще, техника окажется способна создавать космические корабли с СС двигателями, но любопытно, что теор етическая физика, как мы ее сейчас знаем, не закрывает дверь для СС движения насовсем. СС движение в стиле научно-фантастических романов, видимо, совершенно невозможно. Для физиков интересен вопрос: "а почему, собственно, это невозможно, и чему из этого можно научиться?"

. По словам Антонио Эредитато (Antonio Ereditato), сотрудника центра физики частиц на франко-швейцарской границе, после трех лет измерений оказалось, что пучок нейтрино, запущенных из Женевы в итальянскую лабораторию Гран Сассо преодолели расстояние в 730 км на 60 наносекунд быстрее, чем свет.

"У нас высокая уверенность в результатах. Но необходимо, чтобы другие коллеги проделали свои тесты и подтвердили наши результаты ", - отметил он. По словам ученого, погрешность измерений не превышает 10 нс.

Если результаты исследований подтвердятся, то это может поставить под сомнение основу специальной теории относительности Альберта Эйнштейна (1905), которая гласит, что ничто во вселенной не может двигаться быстрее света, т.е. со скоростью выше 299 792 км/с.

0 0

Здесь написана, увы, полная чушь. Агентство "Рейтер" конечно солидная организация, но новости науки необходимо черпать все-таки не из тех же рук, которые приносят новости политики, светской жизни.

"основу специальной теории относительности Альберта Эйнштейна (1905), которая гласит, что ничто во вселенной не может двигаться быстрее света"

Ничего такого теория относительности не утверждает. Теория относительности утверждает, что ничто не может двигаться быстрее света В ВАКУУМЕ. И частицы, которые движутся быстрее света, найдены давным давно, точнее - найдены такие среды, в которой некоторые частицы могут двигаться быстрее фотонов.
Каким образом шел пучок нейтрино из Женеву куда-то там, мне непонятно, но уж явно не в вакууме. Если, к примеру, он шел по воздуху, то ничего удивительного нет в том, что фотоны, рассеиваемые воздухом, дошли до конечной точки позже, чем почти не взаимодействующие с веществом нейтрино.

0 0

0 0

По сути дела, нейтрино всегда буду двигаться быстрее света:) Просто потому, что они с материей практически не взаимодействуют, а свет (фотоны) взаимодействует прекрасно. И только в вакууме фотоны наконец-то разгоняются до полного кайфа:)
А вот интересно было найти такую среду, в которой электроны могли бы двигаться быстрее скорости света. И такую среду нашли и давно. И при этом возникают удивительные эффекты. Посмотри в википедии "Излучение Вавилова-Черенкова".

0 0

0 0

Еще одна публикация по теме:

Физики исследовательского центра Европейской организации по ядерным исследованиям (ЦЕРН) в ходе проведения эксперимента выяснили, что субатомные частицы могут двигаться со скоростью, превышающей скорость света.

Пучок нейтрино, направленный из ЦЕРН в подземную лабораторию Гран-Сассо в Италии на расстояние в 732 км, прибыл на место назначения, как сообщается, на несколько миллиардных долей секунды раньше, чем если бы передвигался со скоростью света.

Если данные эксперимента будут подтверждены, то будет опровергнута теория относительности Эйнштейна, согласно которой скорость света составляет 299 792 458 метров в секунду.

По данным ученых, пучки нейтрино обогнали ее на 60 наносекунд, что противоречит постулату, что элементарные частицы не могут двигаться быстрее скорости света.

Русская служба Би-би-си побеседовала о результатах эксперимента с Рубеном Саакяном, профессором физики Университетского колледжа Лондона.

Би-би-си: Вы работали в лаборатории Гран-Сассо, и, вероятно, хорошо знакомы с экспериментом "Опера".

Рубен Саакян: Я покинул лабораторию Гран-Сассо больше 10 лет назад, когда "Опера" только строилась. "Опера" – это эксперимент, который занимается поиском такого явления, как нейтринные осцилляции, то есть превращения одного типа нейтрино в другой.

Нейтрино – это фундаментальные частицы, так называемые кирпичики мироздания. У них есть ряд интересных свойств, в том числе превращение из одного типа в другой. "Опера" предназначена для того, чтобы изучать эту проблему.

Тот результат (данные, что нейтрино двигаются со скоростью, превышающей скорость света) был побочным продуктом эксперимента, который они делали.

Би-би-си: Убедительны ли представленные учеными результаты?

Р.С.: Опубликованные результаты выглядят убедительно. В экспериментальной науке существует численная мера доверия к результату, то есть ваше измерение должно превышать погрешность измерения по крайней мере в пять раз. А у них оно превышает в шесть раз.

С другой стороны, это сложное измерение, в нем много элементов, и на каждом этапе существует много способов сделать его неправильно. И поэтому нужно воспринимать его со здоровым скептицизмом. К чести авторов, они не интерпретируют результат, а просто констатируют данные, полученные в ходе эксперимента.

Би-би-си: Как отреагировало мировое научное сообщество на эти данные?

Р.С.: Мировое сообщество отреагировало со здоровым скептицизмом и даже консерватизмом. Ведь это серьезный эксперимент, а не популистское заявление.

Последствия, если будет доказанная истинность этих данных, слишком серьезны, чтобы их легко воспринимать.

Изменятся наши фундаментальные представления о мире. Теперь люди будут ждать дальнейших публикаций систематических ошибок эксперимента и, самое главное, данных независимых экспериментов.

Би-би-си: Каких например?

Р.С.: Существует американский эксперимент "Минус", который может это измерение подтвердить. Он очень похож на "Оперу". На ускорителе производится пучок нейтрино, потом посылается на 730 километров и измеряется в подземной лаборатории. Суть измерения проста: вы знаете расстояние между вашим источником и вашим детектором, вы измеряете время, за которое он пришел, и таким образом определяете скорость.

Дьявол в деталях. "Минус" уже четыре года назад произвел похожее измерение, но тогда у них та величина, которую они измерили, и погрешность были соизмеримы друг с другом. Их ключевая проблема заключалась в том, что у них не было точного расстояния.

730 километров между источником и детектором сложно измерить с абсолютной точностью, а "Опера" недавно сумела геодезическими методами измерить это расстояние вплоть до 20 сантиметров. "Минус" будет стараться сделать то же самое и тогда сможет проверить данные этого эксперимента.

Би-би-си: Если результат эксперимента подтвердится, как это повлияет на традиционные представления о мире?

Р.С.: Если это подтвердится, то результат будет серьезный. Сейчас существуют две теории, которые объясняют с научной точки зрения весь мир, который нас окружает: квантовая теория микромира и теория относительности Эйнштейна.

Результат эксперимента (нейтрино двигаются со скоростью, превышающей скорость света) напрямую противоречат теории относительности Эйнштейна, которая утверждает, что в любой точке отсчета скорость света постоянна и ничто не может обогнать скорость света.

Существует огромное количество головокружительных последствий, в частности, возможность путешествия во времени (для частиц).

Http://www.bbc.co.uk/russian/science/2011/09/110923_interview_expert_neutrino_discovery.shtml

0 0

Публикаций будет много, но обсуждать их бессмысленно на 10, так как ты даже не представляешь себе, наверное - насколько физика ушла вперед с 1905 года:), когда Эйнштейн только сформулировал принципы теор относ. Существует масса совершенно неожиданных аспектов у всего этого, и если ими пренебрегать, то легко высасывать сенсации. Экспериментаторы ничего не высасывали, видимо, но только характерно, что ни сами они, ни ученые, которые занимаются этими проблемами, никаких криков не издают - они просто зафиксировали вот такой-то результат и предлагают теперь его проверить и или опровергнуть, или подтвердить, и "подтвердить" - еще не означает, что теория относительности должна быть скорректирована, так как могут быть самые разные объяснения этих данных в условиях существующей модели.
Например представь себе - некая частица так разогнана, что ее скорость почти равна скорости света - ну очень близко. при этом, если ее координата будет достаточно слабо неопределена, то согласно принципу неопределенности гейзенберга неопределенность ее скорости становится такой, что существует ненулевая вероятность того, что частица движется быстрее скорости света. Это известный парадокс, из которого в частности вытекает гипотеза существования антиматерии, которая все прекрасно в итоге и объясняет в рамках существующей модели.
Ну и вспомни такую охрененную штуку, как вакуум Казимира - ваккум это не пустота, это облатсь пространства, которая кишит бесчисленными количествами рождающихся и умирающих виртуальных частиц. Виртуальные они названы потому, что рождаются и аннигилируют они быстрее, чем ты можешь это обнаружить, чтобы зафиксировать нарушение законов сохранения. Тем не менее, при определенных мысленных опытах можно как бы "раздвинуть" пары виртуальных частиц, и они не смогут схлопнуться. Кроме того, если взять исключительно малый размер области пространства, то в нем появится только одна частица, а вторая будет по другую сторону "стенки". Эффект Казимира экспериментально уже доказан, но его изучение стоит практически не сдвигаясь в силу того, что крайне сложно проводить эксперименты в таких малых областях пространства.
Я уж не говорю о теории тахионов, которая тоже спокойно может быть призвана к поддержанию теории относительности (если ее присобачить к объяснению таинственных превращений нейтрино из одного типа в другой и возможной вот этой гтуки с превышением скоротси света
В общем, там деталей столько, что до черта возможностей сохранить теорию относительности в нетронутом виде. Но некоторые из возможных интерпретаций, тем не менее, могут существенно сдвинуть физику вперед.

0 0

Мне еще вот что не ясно: из того что я прочитал и увидел следует, что ученые запустили пучок нейтрино на расстояние 700км на регистрирующее устройство.. Но ведь землю постоянно, каждую секунду пронизывают хуелионы нейтрино, которые никак не взаимодействуют с материей. Как они определили, что на регистраторе зафиксирован именно "их" нейтрино, а не прилетевший из космоса?



 
Статьи по теме:
Как и сколько печь говядину
Запекание мяса в духовке популярно среди хозяек. Если все правила соблюдены, готовое блюдо подают горячим и холодным, делают нарезки для бутербродов. Говядина в духовке станет блюдом дня, если уделить внимание подготовке мяса для запекания. Если не учесть
Почему чешутся яички и что предпринять, чтобы избавиться от дискомфорта
Многие мужчины интересуются, почему у них начинают чесаться яйца и как устранить эту причину. Одни считают, что это из-за некомфортного белья, а другие думают, что дело в нерегулярной гигиене. Так или иначе, эту проблему нужно решать. Почему чешутся яйца
Фарш для котлет из говядины и свинины: рецепт с фото
До недавнего времени я готовил котлеты только из домашнего фарша. Но буквально на днях попробовал приготовить их из куска говяжьей вырезки, честно скажу, они мне очень понравились и пришлись по вкусу всему моему семейству. Для того, чтобы котлетки получил
Схемы выведения космических аппаратов Орбиты искусственных спутников Земли
1 2 3 Ptuf 53 · 10-09-2014 Союз конечно хорошо. но стоимость выведения 1 кг груза всё же запредельная. Ранее мы обсуждали способы доставки на орбиту людей, а мне бы хотелось обсудить альтернативные ракетам способы доставки грузов (согласись з